본문

서브메뉴

Fundamental Limits in Large-Scale Multiple Testing and Its Application.
Fundamental Limits in Large-Scale Multiple Testing and Its Application.

상세정보

자료유형  
 학위논문
Control Number  
0017160442
International Standard Book Number  
9798383565728
Dewey Decimal Classification Number  
310
Main Entry-Personal Name  
Nie, Yutong.
Publication, Distribution, etc. (Imprint  
[S.l.] : Yale University., 2024
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2024
Physical Description  
114 p.
General Note  
Source: Dissertations Abstracts International, Volume: 86-02, Section: B.
General Note  
Advisor: Wu, Yihong;Guan, Leying.
Dissertation Note  
Thesis (Ph.D.)--Yale University, 2024.
Summary, Etc.  
요약The false discovery rate (FDR) and the false non-discovery rate (FNR), defined as the expected false discovery proportion (FDP) and the false non-discovery proportion (FNP), are the most popular benchmarks for multiple testing. Despite the theoretical and algorithmic advances in recent years, the optimal tradeoff between the FDR and the FNR has been largely unknown except for certain restricted classes of decision rules, e.g., separable rules, or for other performance metrics, e.g., the marginal FDR and the marginal FNR (mFDR and mFNR). In this dissertation, we determine the asymptotically optimal FDR-FNR tradeoff under the two-group random mixture model when the number of hypotheses tends to infinity. Distinct from the optimal mFDR-mFNR tradeoff, which is achieved by separable decision rules, the optimal FDR-FNR tradeoff requires compound rules and randomization even in the large-sample limit. This suboptimality of separable rules holds for other objectives as well, such as maximizing the expected number of true discoveries. To address the limitation of the FDR which only controls the expectations but not the fluctuations of the FDP, we also determine the optimal tradeoff when the FDP is controlled with high probability and show it coincides with that of the mFDR and the mFNR. Extensions to models with a fixed number of non-nulls are also obtained. Finally, a data-driven version of the oracle rule is proposed and applied in an analysis of the multi-omics data for long COVID study that involves large-scale multiple testing.
Subject Added Entry-Topical Term  
Statistics.
Index Term-Uncontrolled  
Compound decision rule
Index Term-Uncontrolled  
False discovery rate
Index Term-Uncontrolled  
Multiple testing
Index Term-Uncontrolled  
Long COVID
Added Entry-Corporate Name  
Yale University Statistics and Data Science
Host Item Entry  
Dissertations Abstracts International. 86-02B.
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:657370

MARC

 008250224s2024        us  ||||||||||||||c||eng  d
■001000017160442
■00520250211151020
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798383565728
■035    ▼a(MiAaPQ)AAI30996426
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a310
■1001  ▼aNie,  Yutong.
■24510▼aFundamental  Limits  in  Large-Scale  Multiple  Testing  and  Its  Application.
■260    ▼a[S.l.]▼bYale  University.  ▼c2024
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2024
■300    ▼a114  p.
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  86-02,  Section:  B.
■500    ▼aAdvisor:  Wu,  Yihong;Guan,  Leying.
■5021  ▼aThesis  (Ph.D.)--Yale  University,  2024.
■520    ▼aThe  false  discovery  rate  (FDR)  and  the  false  non-discovery  rate  (FNR),  defined  as  the  expected  false  discovery  proportion  (FDP)  and  the  false  non-discovery  proportion  (FNP),  are  the  most  popular  benchmarks  for  multiple  testing.  Despite  the  theoretical  and  algorithmic  advances  in  recent  years,  the  optimal  tradeoff  between  the  FDR  and  the  FNR  has  been  largely  unknown  except  for  certain  restricted  classes  of  decision  rules,  e.g.,  separable  rules,  or  for  other  performance  metrics,  e.g.,  the  marginal  FDR  and  the  marginal  FNR  (mFDR  and  mFNR).  In  this  dissertation,  we  determine  the  asymptotically  optimal  FDR-FNR  tradeoff  under  the  two-group  random  mixture  model  when  the  number  of  hypotheses  tends  to  infinity.  Distinct  from  the  optimal  mFDR-mFNR  tradeoff,  which  is  achieved  by  separable  decision  rules,  the  optimal  FDR-FNR  tradeoff  requires  compound  rules  and  randomization  even  in  the  large-sample  limit.  This  suboptimality  of  separable  rules  holds  for  other  objectives  as  well,  such  as  maximizing  the  expected  number  of  true  discoveries.  To  address  the  limitation  of  the  FDR  which  only  controls  the  expectations  but  not  the  fluctuations  of  the  FDP,  we  also  determine  the  optimal  tradeoff  when  the  FDP  is  controlled  with  high  probability  and  show  it  coincides  with  that  of  the  mFDR  and  the  mFNR.  Extensions  to  models  with  a  fixed  number  of  non-nulls  are  also  obtained.  Finally,  a  data-driven  version  of  the  oracle  rule  is  proposed  and  applied  in  an  analysis  of  the  multi-omics  data  for  long  COVID  study  that  involves  large-scale  multiple  testing.
■590    ▼aSchool  code:  0265.
■650  4▼aStatistics.
■653    ▼aCompound  decision  rule
■653    ▼aFalse  discovery  rate
■653    ▼aMultiple  testing
■653    ▼aLong  COVID
■690    ▼a0463
■71020▼aYale  University▼bStatistics  and  Data  Science.
■7730  ▼tDissertations  Abstracts  International▼g86-02B.
■790    ▼a0265
■791    ▼aPh.D.
■792    ▼a2024
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T17160442▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    Buch Status

    • Reservierung
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • Meine Mappe
    Sammlungen
    Registrierungsnummer callnumber Standort Verkehr Status Verkehr Info
    TQ0033588 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * Kredite nur für Ihre Daten gebucht werden. Wenn Sie buchen möchten Reservierungen, klicken Sie auf den Button.

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치