본문

서브메뉴

Clinician Distress Trajectories When Caring for Seriously Ill Hospitalized Patients: A Mixed-Methods Study.
Clinician Distress Trajectories When Caring for Seriously Ill Hospitalized Patients: A Mixed-Methods Study.

상세정보

자료유형  
 학위논문
Control Number  
0017163086
International Standard Book Number  
9798384024460
Dewey Decimal Classification Number  
610.73
Main Entry-Personal Name  
Foxwell, Anessa M.
Publication, Distribution, etc. (Imprint  
[S.l.] : University of Pennsylvania., 2024
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2024
Physical Description  
150 p.
General Note  
Source: Dissertations Abstracts International, Volume: 86-02, Section: B.
General Note  
Advisor: Ulrich, Connie M.
Dissertation Note  
Thesis (Ph.D.)--University of Pennsylvania, 2024.
Summary, Etc.  
요약Over 33 million people are hospitalized every year in the US, many of whom are seriously ill and experience substantial distress. Clinicians caring for these complex patients also experience distress while simultaneously juggling competing clinical demands. Clinician distress is underrecognized and rarely identified in real-time, however it may impact serious illness care and patient outcomes. The overall purpose of this prospective cohort study was to describe and identify clinician distress trajectories in general medicine hospital clinicians, i.e. physicians and advanced practice providers (APPs) caring for hospitalized seriously ill patients-defined as patients with a high-risk of short-term mortality-and examine how these trajectories affect palliative care delivery.Manuscript 1 employed dimensional analysis to understand the nature of clinician distress. Manuscripts 2 and 3 used data prospectively collected in 2023 with a total of 184 hospital encounters (clinicians, n=68, matched with seriously ill patients, n=151). In Manuscript 2, longitudinal cluster analysis resulted in four distress typologies: low (n=33), moderate (n=47), high (n=34), and variable (n=28). Clinicians also experience symptoms: fatigue (59.3%), stress (57.4%), worry (47.2%), insomnia (33.3%), anger (13.9%), sadness (9.3%), and pain (4.6%). Univariate logistic regression modeling, APPs were significantly more likely (OR=6.159, p=0.00255) than physicians to be in a higher distress typology. Clinicians with fatigue (OR=3.54, p=0.049), insomnia (OR=5.08, p=0.015), worry (OR=4.65, p=0.009), stress (OR=4.20, p=0.031), sadness (OR=21.0, p=0.018) were more likely in a higher distress typology.Manuscript 3 used qualitative interviews with clinicians (n=25) from each typology to comprehensively understand the experience of distress and integrate data. Qualitative themes of distress experience and sources of distress were compared within and between unique typologies. Mixed analysis confirmed typologies with increasing mean distress thermometer scores and clinician higher emotional symptom burden.Findings advance the understanding of in-the-moment psychological distress for hospital clinicians caring for those with serious illness. Not all clinicians experience distress in the same way; however, findings may help personalize interventions for distress based on the four distinct typologies. Immediate implications for healthcare systems in the current post-pandemic era are to acknowledge and quantify clinician distress, and to develop innovative ways to provide support to distressed clinicians. 
Subject Added Entry-Topical Term  
Nursing.
Subject Added Entry-Topical Term  
Mental health.
Subject Added Entry-Topical Term  
Bioinformatics.
Index Term-Uncontrolled  
Advanced practice providers
Index Term-Uncontrolled  
Palliative care delivery
Index Term-Uncontrolled  
Clinician distress
Index Term-Uncontrolled  
Psychological distress
Index Term-Uncontrolled  
Hospital clinicians
Added Entry-Corporate Name  
University of Pennsylvania Nursing
Host Item Entry  
Dissertations Abstracts International. 86-02B.
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:657276

MARC

 008250224s2024        us  ||||||||||||||c||eng  d
■001000017163086
■00520250211152133
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798384024460
■035    ▼a(MiAaPQ)AAI31483749
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a610.73
■1001  ▼aFoxwell,  Anessa  M.
■24510▼aClinician  Distress  Trajectories  When  Caring  for  Seriously  Ill  Hospitalized  Patients:  A  Mixed-Methods  Study.
■260    ▼a[S.l.]▼bUniversity  of  Pennsylvania.  ▼c2024
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2024
■300    ▼a150  p.
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  86-02,  Section:  B.
■500    ▼aAdvisor:  Ulrich,  Connie  M.
■5021  ▼aThesis  (Ph.D.)--University  of  Pennsylvania,  2024.
■520    ▼aOver  33  million  people  are  hospitalized  every  year  in  the  US,  many  of  whom  are  seriously  ill  and  experience  substantial  distress.  Clinicians  caring  for  these  complex  patients  also  experience  distress  while  simultaneously  juggling  competing  clinical  demands.  Clinician  distress  is  underrecognized  and  rarely  identified  in  real-time,  however  it  may  impact  serious  illness  care  and  patient  outcomes.  The  overall  purpose  of  this  prospective  cohort  study  was  to  describe  and  identify  clinician  distress  trajectories  in  general  medicine  hospital  clinicians,  i.e.  physicians  and  advanced  practice  providers  (APPs)  caring  for  hospitalized  seriously  ill  patients-defined  as  patients  with  a  high-risk  of  short-term  mortality-and  examine  how  these  trajectories  affect  palliative  care  delivery.Manuscript  1  employed  dimensional  analysis  to  understand  the  nature  of  clinician  distress.  Manuscripts  2  and  3  used  data  prospectively  collected  in  2023  with  a  total  of  184  hospital  encounters  (clinicians,  n=68,  matched  with  seriously  ill  patients,  n=151).  In  Manuscript  2,  longitudinal  cluster  analysis  resulted  in  four  distress  typologies:  low  (n=33),  moderate  (n=47),  high  (n=34),  and  variable  (n=28).  Clinicians  also  experience  symptoms:  fatigue  (59.3%),  stress  (57.4%),  worry  (47.2%),  insomnia  (33.3%),  anger  (13.9%),  sadness  (9.3%),  and  pain  (4.6%).  Univariate  logistic  regression  modeling,  APPs  were  significantly  more  likely  (OR=6.159,  p=0.00255)  than  physicians  to  be  in  a  higher  distress  typology.  Clinicians  with  fatigue  (OR=3.54,  p=0.049),  insomnia  (OR=5.08,  p=0.015),  worry  (OR=4.65,  p=0.009),  stress  (OR=4.20,  p=0.031),  sadness  (OR=21.0,  p=0.018)  were  more  likely  in  a  higher  distress  typology.Manuscript  3  used  qualitative  interviews  with  clinicians  (n=25)  from  each  typology  to  comprehensively  understand  the  experience  of  distress  and  integrate  data.  Qualitative  themes  of  distress  experience  and  sources  of  distress  were  compared  within  and  between  unique  typologies.  Mixed  analysis  confirmed  typologies  with  increasing  mean  distress  thermometer  scores  and  clinician  higher  emotional  symptom  burden.Findings  advance  the  understanding  of  in-the-moment  psychological  distress  for  hospital  clinicians  caring  for  those  with  serious  illness.  Not  all  clinicians  experience  distress  in  the  same  way;  however,  findings  may  help  personalize  interventions  for  distress  based  on  the  four  distinct  typologies.  Immediate  implications  for  healthcare  systems  in  the  current  post-pandemic  era  are  to  acknowledge  and  quantify  clinician  distress,  and  to  develop  innovative  ways  to  provide  support  to  distressed  clinicians. 
■590    ▼aSchool  code:  0175.
■650  4▼aNursing.
■650  4▼aMental  health.
■650  4▼aBioinformatics.
■653    ▼aAdvanced  practice  providers
■653    ▼aPalliative  care  delivery
■653    ▼aClinician  distress
■653    ▼aPsychological  distress  
■653    ▼aHospital  clinicians
■690    ▼a0569
■690    ▼a0624
■690    ▼a0347
■690    ▼a0769
■690    ▼a0715
■71020▼aUniversity  of  Pennsylvania▼bNursing.
■7730  ▼tDissertations  Abstracts  International▼g86-02B.
■790    ▼a0175
■791    ▼aPh.D.
■792    ▼a2024
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T17163086▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    Info Détail de la recherche.

    • Réservation
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • My Folder
    Matériel
    Reg No. Call No. emplacement Status Lend Info
    TQ0033494 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * Les réservations sont disponibles dans le livre d'emprunt. Pour faire des réservations, S'il vous plaît cliquer sur le bouton de réservation

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치