본문

서브메뉴

Privacy-Enhanced Learning and Inference With Distributed Clinical Datasets.
Privacy-Enhanced Learning and Inference With Distributed Clinical Datasets.

상세정보

자료유형  
 학위논문
Control Number  
0017164346
International Standard Book Number  
9798384041795
Dewey Decimal Classification Number  
614
Main Entry-Personal Name  
Hu, Mengtong.
Publication, Distribution, etc. (Imprint  
[S.l.] : University of Michigan., 2024
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2024
Physical Description  
124 p.
General Note  
Source: Dissertations Abstracts International, Volume: 86-03, Section: B.
General Note  
Advisor: Song, Peter X. K.;Shi, Xu.
Dissertation Note  
Thesis (Ph.D.)--University of Michigan, 2024.
Summary, Etc.  
요약The integration of data collected from multiple clinical centers can enhance the statistical power of analysis and the generalizability of findings. It is known that merging subject-level data from individual centers for centralized analyses is often logistically non-trivial and may be restricted by data privacy concerns and lawful protection. In practice, this data management task can be rather time-consuming and thus possibly delays scientific discovery. Such a challenge is amplified when data at some centers are of low quantity, leading to unreliable meta-analyses, because associated local estimates may not be properly generated by such data sets. To overcome this issue, we propose several new solutions in that we can perform efficient statistical analyses of multi-center data while protecting patient-level information privacy. Chapter II develops a collaborative average treatment effect inference framework for a multicenter clinical trial to study basal insulin's effect on reducing post-transplantation diabetes mellitus. Our proposed method relies on sequential processing of summary data rather than merging patient-level data. The proposed sequential analytic method delivers an efficient inverse propensity weighting (IPW) estimation of the marginal differential treatment effects between two treatment arms. The statistical efficiency is achieved as the proposed estimation enjoys the convergence rate at the order of the cumulative sample size of all centers involved in the trial. We show theoretically and numerically that this new distributed inference approach has little loss of statistical power compared to the centralized method based on the entire data. Chapter III extends the distributed inference framework to estimate hazard ratios in the Cox proportional hazards model with no need for centralized data access and risk-set construction through maximum likelihood estimation, instead of partial likelihood estimation. The proposed method nonparametrically estimates the baseline hazard function and avoids aggregating individual-level data on the formation of risk sets. Of note, risk-set construction has an ample risk of leaking individual patient information which is unacceptable. The proposed approach of distributed likelihood estimation only shares summary statistics with no reliance on risk sets. We establish large-sample properties of the proposed method and illustrate its performance through simulation experiments and a real-world data example of kidney transplantation in the Organ Procurement and Transplantation Network to understand risk factors associated with 5-year death-censored graft failure for patients who underwent kidney transplants in the USA. Chapter IV concerns a collaborative framework for the Accelerated Failure Time (AFT) model, a popular alternative to the Cox model for the analysis of time-to-failure data. The AFT model directly accounts for the effects of the covariates on times to failure, rather than on hazard functions, thus the assumption of proportional hazards is not required. Consequently, it provides more flexibility in data aggregation than the Cox model. Our proposed distributed inference method focuses on a class of parametric AFT models with Weibull, log-normal, and log-logistic distributions for time-to-event outcomes, in which a distributed likelihood ratio test is established under the generalized gamma distribution to assess the goodness-of-fit across different candidate parametric models. We present large-sample properties for the proposed method and illustrate their performance through simulation experiments and a real-world data example on kidney transplantation.
Subject Added Entry-Topical Term  
Public health.
Subject Added Entry-Topical Term  
Statistics.
Subject Added Entry-Topical Term  
Biostatistics.
Subject Added Entry-Topical Term  
Bioinformatics.
Index Term-Uncontrolled  
Distributed inference
Index Term-Uncontrolled  
Federated learning
Index Term-Uncontrolled  
Data privacy
Index Term-Uncontrolled  
Collaborative inference
Index Term-Uncontrolled  
Survival analysis
Index Term-Uncontrolled  
Causal inference
Added Entry-Corporate Name  
University of Michigan Biostatistics
Host Item Entry  
Dissertations Abstracts International. 86-03B.
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:657248

MARC

 008250224s2024        us  ||||||||||||||c||eng  d
■001000017164346
■00520250211152951
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798384041795
■035    ▼a(MiAaPQ)AAI31631038
■035    ▼a(MiAaPQ)umichrackham005755
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a614
■1001  ▼aHu,  Mengtong.
■24510▼aPrivacy-Enhanced  Learning  and  Inference  With  Distributed  Clinical  Datasets.
■260    ▼a[S.l.]▼bUniversity  of  Michigan.  ▼c2024
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2024
■300    ▼a124  p.
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  86-03,  Section:  B.
■500    ▼aAdvisor:  Song,    Peter  X.  K.;Shi,  Xu.
■5021  ▼aThesis  (Ph.D.)--University  of  Michigan,  2024.
■520    ▼aThe  integration  of  data  collected  from  multiple  clinical  centers  can  enhance  the  statistical  power  of  analysis  and  the  generalizability  of  findings.  It  is  known  that  merging  subject-level  data  from  individual  centers  for  centralized  analyses  is  often  logistically  non-trivial  and  may  be  restricted  by  data  privacy  concerns  and  lawful  protection.  In  practice,  this  data  management  task  can  be  rather  time-consuming  and  thus  possibly  delays  scientific  discovery.  Such  a  challenge  is  amplified  when  data  at  some  centers  are  of  low  quantity,  leading  to  unreliable  meta-analyses,  because  associated  local  estimates  may  not  be  properly  generated  by  such  data  sets.  To  overcome  this  issue,  we  propose  several  new  solutions  in  that  we  can  perform  efficient  statistical  analyses  of  multi-center  data  while  protecting  patient-level  information  privacy.    Chapter  II  develops  a  collaborative  average  treatment  effect  inference  framework  for  a  multicenter  clinical  trial  to  study  basal  insulin's  effect  on  reducing  post-transplantation  diabetes  mellitus.  Our  proposed  method  relies  on  sequential  processing  of  summary  data  rather  than  merging  patient-level  data.  The  proposed  sequential  analytic  method  delivers  an  efficient  inverse  propensity  weighting  (IPW)  estimation  of  the  marginal  differential  treatment  effects  between  two  treatment  arms.  The  statistical  efficiency  is  achieved  as  the  proposed  estimation  enjoys  the  convergence  rate  at  the  order  of  the  cumulative  sample  size  of  all  centers  involved  in  the  trial.    We  show  theoretically  and  numerically  that  this  new  distributed  inference  approach  has  little  loss  of  statistical  power  compared  to  the  centralized  method  based  on  the  entire  data.    Chapter  III  extends  the  distributed  inference  framework  to  estimate  hazard  ratios  in  the  Cox  proportional  hazards  model  with  no  need  for  centralized  data  access  and  risk-set  construction  through  maximum  likelihood  estimation,  instead  of  partial  likelihood  estimation.  The  proposed  method  nonparametrically  estimates  the  baseline  hazard  function  and  avoids  aggregating  individual-level  data  on  the  formation  of  risk  sets.    Of  note,  risk-set  construction  has  an  ample  risk  of  leaking  individual  patient  information  which  is  unacceptable.  The  proposed  approach  of  distributed  likelihood  estimation  only  shares  summary  statistics  with  no  reliance  on  risk  sets.    We  establish  large-sample  properties  of  the  proposed  method  and  illustrate  its  performance  through  simulation  experiments  and  a  real-world  data  example  of  kidney  transplantation  in  the  Organ  Procurement  and  Transplantation  Network  to  understand  risk  factors  associated  with  5-year  death-censored  graft  failure  for  patients  who  underwent  kidney  transplants  in  the  USA.  Chapter  IV  concerns  a  collaborative  framework  for  the  Accelerated  Failure  Time  (AFT)  model,  a  popular  alternative  to  the  Cox  model  for  the  analysis  of  time-to-failure  data.  The  AFT  model  directly  accounts  for  the  effects  of  the  covariates  on  times  to  failure,  rather  than  on  hazard  functions,  thus  the  assumption  of  proportional  hazards  is  not  required.  Consequently,  it  provides  more  flexibility  in  data  aggregation  than  the  Cox  model.  Our  proposed  distributed  inference  method  focuses  on  a  class  of  parametric  AFT  models  with  Weibull,  log-normal,  and  log-logistic  distributions  for  time-to-event  outcomes,  in  which  a  distributed  likelihood  ratio  test  is  established  under  the  generalized  gamma  distribution  to  assess  the  goodness-of-fit  across  different  candidate  parametric  models.    We  present  large-sample  properties  for  the  proposed  method  and  illustrate  their  performance  through  simulation  experiments  and  a  real-world  data  example  on  kidney  transplantation.
■590    ▼aSchool  code:  0127.
■650  4▼aPublic  health.
■650  4▼aStatistics.
■650  4▼aBiostatistics.
■650  4▼aBioinformatics.
■653    ▼aDistributed  inference
■653    ▼aFederated  learning
■653    ▼aData  privacy
■653    ▼aCollaborative  inference
■653    ▼aSurvival  analysis
■653    ▼aCausal  inference
■690    ▼a0308
■690    ▼a0463
■690    ▼a0573
■690    ▼a0769
■690    ▼a0715
■71020▼aUniversity  of  Michigan▼bBiostatistics.
■7730  ▼tDissertations  Abstracts  International▼g86-03B.
■790    ▼a0127
■791    ▼aPh.D.
■792    ▼a2024
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T17164346▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    高级搜索信息

    • 预订
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • 我的文件夹
    材料
    注册编号 呼叫号码. 收藏 状态 借信息.
    TQ0033468 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    *保留在借用的书可用。预订,请点击预订按钮

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치