본문

서브메뉴

Learning About and Over Networks: Optimized Designs for Network Tomography and Decentralized Learning.
Learning About and Over Networks: Optimized Designs for Network Tomography and Decentralized Learning.

상세정보

자료유형  
 학위논문
Control Number  
0017164424
International Standard Book Number  
9798346387824
Dewey Decimal Classification Number  
620
Main Entry-Personal Name  
Chiu, Cho-Chun.
Publication, Distribution, etc. (Imprint  
[S.l.] : The Pennsylvania State University., 2024
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2024
Physical Description  
173 p.
General Note  
Source: Dissertations Abstracts International, Volume: 86-05, Section: B.
General Note  
Advisor: He, Ting.
Dissertation Note  
Thesis (Ph.D.)--The Pennsylvania State University, 2024.
Summary, Etc.  
요약In the context of this dissertation, learning in network includes to two parts: learning about network and learning over network.The former refers to applying network tomography to learn the link performance metrics (e.q., link delays) from end-to-end measurement. The later refers to training a machine learning model over the network. Our four pieces of work focus on optimizing the designs of network tomography, data curation, and model training.In our first piece of work, we aim to understand the fundamental limit of network tomography in an adversarial environment. We formulate and analyze a novel type of attack that aims at maximally degrading the performance of targeted paths without being localized by network tomography, called stealthy DeGrading of Service (DGoS) attack. By analyzing properties of the optimal attack strategy, we formulate novel combinatorial optimizations to design the optimal attack strategy, which are then linked to well-known NP-hard problems and approximation algorithms. As a byproduct, our algorithms also identify approximations of the most vulnerable set of links that once manipulated, can inflict the maximum performance degradation. Our evaluations on real topologies demonstrate the large potential damage of such attacks, signaling the need of new defenses.In our second piece of work, we aim to design the defense strategy of DGoS attack for network tomography. In order to mitigate the performance degradation, our model allows network tomography to measure a larger set of paths, e.g., by sending probes on some paths not carrying data flows. By developing and analyzing the optimal attack strategy, we quantify the maximum damage of such an attack. We further develop a defense strategy by formulating and solving a Stackelberg game to select the best set of measurement paths under a budget constraint. Our evaluations on real topologies validate the efficacy of the proposed defense strategy while identifying areas for further improvement.In our third piece of work, we aim to reduce the communication cost for decentralized learning. We consider the problem of training a given machine learning model by decentralized parallel stochastic gradient descent over training data distributed across multiple nodes. To optimize communication cost, we propose a framework and efficient algorithms to design the communication patterns through the mixing matrix sampling, which governs not only which nodes should communicate with each other but also what weights the communicated parameters should carry during parameter aggregation. Our framework is designed to minimize the total cost incurred until convergence based on any given cost model that is additive over iterations. Our solution achieves superior performance under a variety of network settings and cost models in experiments based on real datasets and topologies, saving 24-50% of the cost compared to the state-of-the-art design without compromising the quality of the trained model.In our fourth piece of work, we aim to reduce the communication cost for machine learning in wireless body area network (WBAN). We consider the problem of training a target model over the data collected through body sensors in WBAN, where resources at body sensors are limited. Since samples are unlabeled in the data collection phase, classical active learning can not be applied to reduce the communication cost. To handle these challenges, we propose a two-phased active learning method, consisting of an online phase where a coreset construction algorithm is proposed to select a subset of unlabeled samples based on their noisy predictions, and an offline phase where the selected samples are labeled to train the target model. Our evaluation based on real health monitoring data and our own experimentation demonstrates that our solution can drastically save the data curation cost without sacrificing the quality of the target model.
Subject Added Entry-Topical Term  
Wireless networks.
Subject Added Entry-Topical Term  
Tomography.
Subject Added Entry-Topical Term  
Communication.
Subject Added Entry-Topical Term  
Bandwidths.
Subject Added Entry-Topical Term  
Linear programming.
Subject Added Entry-Topical Term  
Defense.
Subject Added Entry-Topical Term  
Energy consumption.
Subject Added Entry-Topical Term  
Electrical engineering.
Subject Added Entry-Topical Term  
Energy.
Subject Added Entry-Topical Term  
Medical imaging.
Added Entry-Corporate Name  
The Pennsylvania State University.
Host Item Entry  
Dissertations Abstracts International. 86-05B.
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:657224

MARC

 008250224s2024        us  ||||||||||||||c||eng  d
■001000017164424
■00520250211153000
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798346387824
■035    ▼a(MiAaPQ)AAI31631282
■035    ▼a(MiAaPQ)PennState19732cuc496
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a620
■1001  ▼aChiu,  Cho-Chun.
■24510▼aLearning  About  and  Over  Networks:  Optimized  Designs  for  Network  Tomography  and  Decentralized  Learning.
■260    ▼a[S.l.]▼bThe  Pennsylvania  State  University.  ▼c2024
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2024
■300    ▼a173  p.
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  86-05,  Section:  B.
■500    ▼aAdvisor:  He,  Ting.
■5021  ▼aThesis  (Ph.D.)--The  Pennsylvania  State  University,  2024.
■520    ▼aIn  the  context  of  this  dissertation,  learning  in  network  includes  to  two  parts:  learning  about  network  and  learning  over  network.The  former  refers  to  applying  network  tomography  to  learn  the  link  performance  metrics  (e.q.,  link  delays)  from  end-to-end  measurement.  The  later  refers  to  training  a  machine  learning  model  over  the  network.  Our  four  pieces  of  work  focus  on  optimizing  the  designs  of  network  tomography,  data  curation,  and  model  training.In  our  first  piece  of  work,  we  aim  to  understand  the  fundamental  limit  of  network  tomography  in  an  adversarial  environment.  We  formulate  and  analyze  a  novel  type  of  attack  that  aims  at  maximally  degrading  the  performance  of  targeted  paths  without  being  localized  by  network  tomography,  called  stealthy  DeGrading  of  Service  (DGoS)  attack.  By  analyzing  properties  of  the  optimal  attack  strategy,  we  formulate  novel  combinatorial  optimizations  to  design  the  optimal  attack  strategy,  which  are  then  linked  to  well-known  NP-hard  problems  and  approximation  algorithms.  As  a  byproduct,  our  algorithms  also  identify  approximations  of  the  most  vulnerable  set  of  links  that  once  manipulated,  can  inflict  the  maximum  performance  degradation.  Our  evaluations  on  real  topologies  demonstrate  the  large  potential  damage  of  such  attacks,  signaling  the  need  of  new  defenses.In  our  second  piece  of  work,  we  aim  to  design  the  defense  strategy  of  DGoS  attack  for  network  tomography.  In  order  to  mitigate  the  performance  degradation,  our  model  allows  network  tomography  to  measure  a  larger  set  of  paths,  e.g.,  by  sending  probes  on  some  paths  not  carrying  data  flows.  By  developing  and  analyzing  the  optimal  attack  strategy,  we  quantify  the  maximum  damage  of  such  an  attack.  We  further  develop  a  defense  strategy  by  formulating  and  solving  a  Stackelberg  game  to  select  the  best  set  of  measurement  paths  under  a  budget  constraint.  Our  evaluations  on  real  topologies  validate  the  efficacy  of  the  proposed  defense  strategy  while  identifying  areas  for  further  improvement.In  our  third  piece  of  work,  we  aim  to  reduce  the  communication  cost  for  decentralized  learning.  We  consider  the  problem  of  training  a  given  machine  learning  model  by  decentralized  parallel  stochastic  gradient  descent  over  training  data  distributed  across  multiple  nodes.  To  optimize  communication  cost,  we  propose  a  framework  and  efficient  algorithms  to  design  the  communication  patterns  through  the  mixing  matrix  sampling,  which  governs  not  only  which  nodes  should  communicate  with  each  other  but  also  what  weights  the  communicated  parameters  should  carry  during  parameter  aggregation.  Our  framework  is  designed  to  minimize  the  total  cost  incurred  until  convergence  based  on  any  given  cost  model  that  is  additive  over  iterations.  Our  solution  achieves  superior  performance  under  a  variety  of  network  settings  and  cost  models  in  experiments  based  on  real  datasets  and  topologies,  saving  24-50%  of  the  cost  compared  to  the  state-of-the-art  design  without  compromising  the  quality  of  the  trained  model.In  our  fourth  piece  of  work,  we  aim  to  reduce  the  communication  cost  for  machine  learning  in  wireless  body  area  network  (WBAN).  We  consider  the  problem  of  training  a  target  model  over  the  data  collected  through  body  sensors  in  WBAN,  where  resources  at  body  sensors  are  limited.  Since  samples  are  unlabeled  in  the  data  collection  phase,  classical  active  learning  can  not  be  applied  to  reduce  the  communication  cost.  To  handle  these  challenges,  we  propose  a  two-phased  active  learning  method,  consisting  of  an  online  phase  where  a  coreset  construction  algorithm  is  proposed  to  select  a  subset  of  unlabeled  samples  based  on  their  noisy  predictions,  and  an  offline  phase  where  the  selected  samples  are  labeled  to  train  the  target  model.  Our  evaluation  based  on  real  health  monitoring  data  and  our  own  experimentation  demonstrates  that  our  solution  can  drastically  save  the  data  curation  cost  without  sacrificing  the  quality  of  the  target  model.
■590    ▼aSchool  code:  0176.
■650  4▼aWireless  networks.
■650  4▼aTomography.
■650  4▼aCommunication.
■650  4▼aBandwidths.
■650  4▼aLinear  programming.
■650  4▼aDefense.
■650  4▼aEnergy  consumption.
■650  4▼aElectrical  engineering.
■650  4▼aEnergy.
■650  4▼aMedical  imaging.
■690    ▼a0459
■690    ▼a0544
■690    ▼a0791
■690    ▼a0574
■71020▼aThe  Pennsylvania  State  University.
■7730  ▼tDissertations  Abstracts  International▼g86-05B.
■790    ▼a0176
■791    ▼aPh.D.
■792    ▼a2024
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T17164424▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    신착도서 더보기
    관련도서 더보기
    최근 3년간 통계입니다.

    소장정보

    • 예약
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • 나의폴더
    소장자료
    등록번호 청구기호 소장처 대출가능여부 대출정보
    TQ0033442 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * 대출중인 자료에 한하여 예약이 가능합니다. 예약을 원하시면 예약버튼을 클릭하십시오.

    해당 도서를 다른 이용자가 함께 대출한 도서

    관련도서

    관련 인기도서

    도서위치