본문

서브메뉴

Models, Algorithms, and Downstream Applications of Nanopore Sequencing.
Models, Algorithms, and Downstream Applications of Nanopore Sequencing.

상세정보

자료유형  
 학위논문
Control Number  
0017162455
International Standard Book Number  
9798383575581
Dewey Decimal Classification Number  
620
Main Entry-Personal Name  
Joshi, Dhaivat Janmejay.
Publication, Distribution, etc. (Imprint  
[S.l.] : University of California, Los Angeles., 2024
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2024
Physical Description  
168 p.
General Note  
Source: Dissertations Abstracts International, Volume: 86-02, Section: B.
General Note  
Advisor: Diggavi, Suhas N.
Dissertation Note  
Thesis (Ph.D.)--University of California, Los Angeles, 2024.
Summary, Etc.  
요약The advent of nanopore sequencing technology represents a significant leap forward in the ability to read long fragments of DNA, up to 4M bases, surpassing the capabilities of traditional short-read sequencing methods that can read a few hundred bases. Despite its potential, nanopore sequencing is challenged by high error rates (5% − 15%). In this dissertation, we presents a comprehensive examination of various computational approaches to address these challenges and enhance the utility of nanopore sequencing technology in genomic analysis by using an underlying physics-based model of nanopore sequencers to guide our methods.First, we describe a mathematical model that describes the "nanopore channel" which takes a DNA sequence as input and outputs observed current variations in a nanopore sequencer. This model accounts for impairments such as inter-symbol interference, insertions deletions, channel fading, and random responses. Moreover, the model also provides insights for the error profiles in the nanopore sequencer that can be utilized to develop algorithms for downstream applications. We further study the bounds on the information extraction capacity of nanopore sequencers that provides benchmarks for existing base-calling algorithms and guidelines for designing improved nanopores. Our first main algorithmic work introduces QAlign, a preprocessing tool that improves the accuracy and efficiency of long-read aligners by converting nucleotide reads into discretized current levels. This transformation captures the error characteristics of nanopore sequencers studied in the previous work, enhancing alignment rates of nanopore reads to reference from around 80% to 90%, improving overlap quality for read-to-read alignments, and read-to-transcriptome alignment rates significantly across multiple datasets.Our second main algorithmic work focuses on the detection of structural variants (SVs) using nanopore sequenced reads. We present HQAlign, an aligner designed to leverage the physics of nanopore sequencing and SV-specific modifications to enhance alignment accuracy. HQAlign demonstrates a 4% − 6% improvement in detecting complementary SVs compared to the minimap2 aligner, along with substantial improvements in breakpoint accuracy and overall alignment rates for read to reference alignments as compared to QAlign and minimap2.The final algorithmic work addresses the challenge of identifying heterozygous variants using the highly erroneous nanopore reads data for developing algorithms for diploid genome assembly. We propose an algorithm that identifies heterozygous variants with a recall of 90% and precision of 70%, facilitating the reconstruction of diploid genomes without additional reference information or preliminary draft assemblies.Collectively, these studies advance the understanding and application of nanopore sequencing technology, offering novel computational methods to mitigate high error rates and improve genomic analyses, including alignment, structural variant detection, and diploid genome assembly.
Subject Added Entry-Topical Term  
Engineering.
Subject Added Entry-Topical Term  
Systematic biology.
Subject Added Entry-Topical Term  
Nanotechnology.
Subject Added Entry-Topical Term  
Bioengineering.
Subject Added Entry-Topical Term  
Genetics.
Index Term-Uncontrolled  
Algorithms
Index Term-Uncontrolled  
Genome assembly
Index Term-Uncontrolled  
Nanopore sequencing
Index Term-Uncontrolled  
Sequence alignment
Index Term-Uncontrolled  
Structural variant
Added Entry-Corporate Name  
University of California, Los Angeles Electrical and Computer Engineering 0333
Host Item Entry  
Dissertations Abstracts International. 86-02B.
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:657182

MARC

 008250224s2024        us  ||||||||||||||c||eng  d
■001000017162455
■00520250211152014
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798383575581
■035    ▼a(MiAaPQ)AAI31331641
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a620
■1001  ▼aJoshi,  Dhaivat  Janmejay.
■24510▼aModels,  Algorithms,  and  Downstream  Applications  of  Nanopore  Sequencing.
■260    ▼a[S.l.]▼bUniversity  of  California,  Los  Angeles.  ▼c2024
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2024
■300    ▼a168  p.
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  86-02,  Section:  B.
■500    ▼aAdvisor:  Diggavi,  Suhas  N.
■5021  ▼aThesis  (Ph.D.)--University  of  California,  Los  Angeles,  2024.
■520    ▼aThe  advent  of  nanopore  sequencing  technology  represents  a  significant  leap  forward  in  the  ability  to  read  long  fragments  of  DNA,  up  to  4M  bases,  surpassing  the  capabilities  of  traditional  short-read  sequencing  methods  that  can  read  a  few  hundred  bases.  Despite  its  potential,  nanopore  sequencing  is  challenged  by  high  error  rates  (5%  −  15%).  In  this  dissertation,  we  presents  a  comprehensive  examination  of  various  computational  approaches  to  address  these  challenges  and  enhance  the  utility  of  nanopore  sequencing  technology  in  genomic  analysis  by  using  an  underlying  physics-based  model  of  nanopore  sequencers  to  guide  our  methods.First,  we  describe  a  mathematical  model  that  describes  the  "nanopore  channel"  which  takes  a  DNA  sequence  as  input  and  outputs  observed  current  variations  in  a  nanopore  sequencer.  This  model  accounts  for  impairments  such  as  inter-symbol  interference,  insertions  deletions,  channel  fading,  and  random  responses.  Moreover,  the  model  also  provides  insights  for  the  error  profiles  in  the  nanopore  sequencer  that  can  be  utilized  to  develop  algorithms  for  downstream  applications.  We  further  study  the  bounds  on  the  information  extraction  capacity  of  nanopore  sequencers  that  provides  benchmarks  for  existing  base-calling  algorithms  and  guidelines  for  designing  improved  nanopores. Our  first  main  algorithmic  work  introduces  QAlign,  a  preprocessing  tool  that  improves  the  accuracy  and  efficiency  of  long-read  aligners  by  converting  nucleotide  reads  into  discretized  current  levels.  This  transformation  captures  the  error  characteristics  of  nanopore  sequencers  studied  in  the  previous  work,  enhancing  alignment  rates  of  nanopore  reads  to  reference  from  around  80%  to  90%,  improving  overlap  quality  for  read-to-read  alignments,  and  read-to-transcriptome  alignment  rates  significantly  across  multiple  datasets.Our  second  main  algorithmic  work  focuses  on  the  detection  of  structural  variants  (SVs)  using  nanopore  sequenced  reads.  We  present  HQAlign,  an  aligner  designed  to  leverage  the  physics  of  nanopore  sequencing  and  SV-specific  modifications  to  enhance  alignment  accuracy.  HQAlign  demonstrates  a  4%  −  6%  improvement  in  detecting  complementary  SVs  compared  to  the  minimap2  aligner,  along  with  substantial  improvements  in  breakpoint  accuracy  and  overall  alignment  rates  for  read  to  reference  alignments  as  compared  to  QAlign  and  minimap2.The  final  algorithmic  work  addresses  the  challenge  of  identifying  heterozygous  variants  using  the  highly  erroneous  nanopore  reads  data  for  developing  algorithms  for  diploid  genome  assembly.  We  propose  an  algorithm  that  identifies  heterozygous  variants  with  a  recall  of  90%  and  precision  of  70%,  facilitating  the  reconstruction  of  diploid  genomes  without  additional  reference  information  or  preliminary  draft  assemblies.Collectively,  these  studies  advance  the  understanding  and  application  of  nanopore  sequencing  technology,  offering  novel  computational  methods  to  mitigate  high  error  rates  and  improve  genomic  analyses,  including  alignment,  structural  variant  detection,  and  diploid  genome  assembly.
■590    ▼aSchool  code:  0031.
■650  4▼aEngineering.
■650  4▼aSystematic  biology.
■650  4▼aNanotechnology.
■650  4▼aBioengineering.
■650  4▼aGenetics.
■653    ▼aAlgorithms
■653    ▼aGenome  assembly
■653    ▼aNanopore  sequencing
■653    ▼aSequence  alignment
■653    ▼aStructural  variant
■690    ▼a0537
■690    ▼a0202
■690    ▼a0423
■690    ▼a0652
■690    ▼a0369
■71020▼aUniversity  of  California,  Los  Angeles▼bElectrical  and  Computer  Engineering  0333.
■7730  ▼tDissertations  Abstracts  International▼g86-02B.
■790    ▼a0031
■791    ▼aPh.D.
■792    ▼a2024
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T17162455▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    פרט מידע

    • הזמנה
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • התיקיה שלי
    גשמי
    Reg No. Call No. מיקום מצב להשאיל מידע
    TQ0033400 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * הזמנות זמינים בספר ההשאלה. כדי להזמין, נא לחץ על כפתור ההזמנה

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치