본문

서브메뉴

Investigating the Photophysics of Quantum Dot and Rare-Earth Doped Ferroelectric Thin Films.
Investigating the Photophysics of Quantum Dot and Rare-Earth Doped Ferroelectric Thin Films.

상세정보

자료유형  
 학위논문
Control Number  
0017161679
International Standard Book Number  
9798384452874
Dewey Decimal Classification Number  
541
Main Entry-Personal Name  
Brinn, Rafaela Mendes.
Publication, Distribution, etc. (Imprint  
[S.l.] : University of California, Berkeley., 2024
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2024
Physical Description  
165 p.
General Note  
Source: Dissertations Abstracts International, Volume: 86-03, Section: B.
General Note  
Advisor: Alivisatos, A. Paul;Ramesh, Ramamoorthy.
Dissertation Note  
Thesis (Ph.D.)--University of California, Berkeley, 2024.
Summary, Etc.  
요약This dissertation is composed of 7 chapters discussing optical studies performed in thin film samples. These studies are separated in two parts. Part I focuses on studies performed on quantum dot monolayer thin films while Part II discusses work on erbium doped ferroelectric thin films. Part I will have 4 chapters: Chapter 1 is an introductory chapter on quantum dots' structural and optical properties, Chapter 2 is a quantitative study on the recombination rates of QD thin films with different shell thicknesses, Chapter 3 will discuss incorporation of atomic dopants to engineer quantum dots of a specific size and energy and finally Chapter 4 will provide a brief conclusion on the work done as well as outlook on future avenues of controlling the photophysics of QD thin film. Part II will have 3 additional chapters: Chapter 5 will expand on fundamental concepts of rare-earth doped ferroelectric thin films, Chapter 6 will contain a study on tuning erbium emission via epitaxial strain engineering of the ferroelectric thin film matrix and Chapter 7 will contain concluding thoughts on this part of the dissertation and provide outlooks on potential strategies to further manipulate erbium emission. To briefly expand more on the projects discussed in Chapter 2,3,and 6.In Chapter 2, we measure the photoluminescence quantum yield of self-assembled quantum dot monolayer thin films and quantify their radiative and nonradiative rates. The recombination rates of core/shell quantum dot self-assembled monolayer superlattices are systematically compared to their colloidal solution counterparts. Both the radiative and nonradiative rates of these quantum dots were found to be enhanced in the thin film samples. The increase in nonradiative rate is expected and can be attributed to the stripping of ligands from the nanocrystal surface as well as energy transfer in close-packed solid-state samples. In contrast, the increase in radiative rate in the film reveals a change in the fundamental optical properties of quantum dot films, suggesting that the oscillator strength of the nanocrystals increases in the films compared to in solution. The increase in oscillator strength is likely due to changes in the organic ligand shell coverage and its effect on the electronic band structure of the quantum dot.In Chapter 3, we study exciton diffusion lengths in micron-sized superlattices where Te-doped CdSe:Te/CdS nanocrystals serve as the building blocks. These nanocrystals are synthesized colloidally with 5% of Te dopant stoichiometrically added during the seeded growth synthesis of wurtzite CdSe nanocrystals. Through this colloidal synthesis, we can make nanocrystals with a much broader and red-shifted emission than their undoped counterparts, proving that the Te-dopant has been successfully incorporated in the CdSe matrix. A thin hexagonal CdS shell is then grown around the Te-doped CdSe core forming a dot-in-plate (or nut in bolt) shape. Using elemental mapping techniques we characterize the distribution of elements in our CdSe:Te/CdS core/shell nanocrystals. Based on their shape, these nanocrystals can self-assemble into a highly ordered 2D superlattice structure with a heterogeneous energy landscape. Using Stimulated Emission Depletion (STED) microscopy, we measure the exciton diffusion lengths in these superlattices to elucidate the role of the Te-dopant in transport.In Chapter 6, we discuss how erbium doped materials are powerful candidates for quantum information sciences due to their long electron and nuclear spin coherence times, as well as telecom-wavelength emission. By selecting host materials with interesting, controllable properties, we introduce a new parameter that can be used to study Er3+ emission. In this work, we study erbium (Er3+)-doped PbTiO3 thin films. PbTiO3 is a well-studied ferroelectric material with known methods of engineering different domain configurations through epitaxial strain. Through changing the domain configurations of the PbTiO3 thin films, we create radically different crystal fields around the Er3+ dopant. This is resolved through changes in the Er3+ resonant fluorescence spectra, tying the optical properties of the defect directly to the domain configurations of the ferroelectic matrix. Additionally, a second set of peaks are observed for films with in-plane polarization. We hypothesize these results to be due to either the Er3+ substituting different sites of the PbTiO3 crystal or due to differences in charges between the Er3+ dopant and the original substituent ion. Understanding the relationship between the Er3+ emission and the epitaxial strain of the ferroelectric matrix lays the pathway for future optical studies of spin manipulation through altering ferroic order parameters.
Subject Added Entry-Topical Term  
Physical chemistry.
Subject Added Entry-Topical Term  
Nanotechnology.
Subject Added Entry-Topical Term  
Materials science.
Subject Added Entry-Topical Term  
Chemistry.
Index Term-Uncontrolled  
Exciton dynamics
Index Term-Uncontrolled  
Ferroelectrics
Index Term-Uncontrolled  
Fluorescence spectroscopy
Index Term-Uncontrolled  
Quantum dots
Added Entry-Corporate Name  
University of California, Berkeley Chemistry
Host Item Entry  
Dissertations Abstracts International. 86-03B.
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:657168

MARC

 008250224s2024        us  ||||||||||||||c||eng  d
■001000017161679
■00520250211151429
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798384452874
■035    ▼a(MiAaPQ)AAI31295162
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a541
■1001  ▼aBrinn,  Rafaela  Mendes.
■24510▼aInvestigating  the  Photophysics  of  Quantum  Dot  and  Rare-Earth  Doped  Ferroelectric  Thin  Films.
■260    ▼a[S.l.]▼bUniversity  of  California,  Berkeley.  ▼c2024
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2024
■300    ▼a165  p.
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  86-03,  Section:  B.
■500    ▼aAdvisor:  Alivisatos,  A.  Paul;Ramesh,  Ramamoorthy.
■5021  ▼aThesis  (Ph.D.)--University  of  California,  Berkeley,  2024.
■520    ▼aThis  dissertation  is  composed  of  7  chapters  discussing  optical  studies  performed  in  thin  film  samples.  These  studies  are  separated  in  two  parts.  Part  I  focuses  on  studies  performed  on  quantum  dot  monolayer  thin  films  while  Part  II  discusses  work  on  erbium  doped  ferroelectric  thin  films.  Part  I  will  have  4  chapters:  Chapter  1  is  an  introductory  chapter  on  quantum  dots'  structural  and  optical  properties,  Chapter  2  is  a  quantitative  study  on  the  recombination  rates  of  QD  thin  films  with  different  shell  thicknesses,  Chapter  3  will  discuss  incorporation  of  atomic  dopants  to  engineer  quantum  dots  of  a  specific  size  and  energy  and  finally  Chapter  4  will  provide  a  brief  conclusion  on  the  work  done  as  well  as  outlook  on  future  avenues  of  controlling  the  photophysics  of  QD  thin  film.  Part  II  will  have  3  additional  chapters:  Chapter  5  will  expand  on  fundamental  concepts  of  rare-earth  doped  ferroelectric  thin  films,  Chapter  6  will  contain  a  study  on  tuning  erbium  emission  via  epitaxial  strain  engineering  of  the  ferroelectric  thin  film  matrix  and  Chapter  7  will  contain  concluding  thoughts  on  this  part  of  the  dissertation  and  provide  outlooks  on  potential  strategies  to  further  manipulate  erbium  emission.  To  briefly  expand  more  on  the  projects  discussed  in  Chapter  2,3,and  6.In  Chapter  2,  we  measure  the  photoluminescence  quantum  yield  of  self-assembled  quantum  dot  monolayer  thin  films  and  quantify  their  radiative  and  nonradiative  rates.  The  recombination  rates  of  core/shell  quantum  dot  self-assembled  monolayer  superlattices  are  systematically  compared  to  their  colloidal  solution  counterparts.  Both  the  radiative  and  nonradiative  rates  of  these  quantum  dots  were  found  to  be  enhanced  in  the  thin  film  samples.  The  increase  in  nonradiative  rate  is  expected  and  can  be  attributed  to  the  stripping  of  ligands  from  the  nanocrystal  surface  as  well  as  energy  transfer  in  close-packed  solid-state  samples.  In  contrast,  the  increase  in  radiative  rate  in  the  film  reveals  a  change  in  the  fundamental  optical  properties  of  quantum  dot  films,  suggesting  that  the  oscillator  strength  of  the  nanocrystals  increases  in  the  films  compared  to  in  solution.  The  increase  in  oscillator  strength  is  likely  due  to  changes  in  the  organic  ligand  shell  coverage  and  its  effect  on  the  electronic  band  structure  of  the  quantum  dot.In  Chapter  3,  we  study  exciton  diffusion  lengths  in  micron-sized  superlattices  where  Te-doped  CdSe:Te/CdS  nanocrystals  serve  as  the  building  blocks.  These  nanocrystals  are  synthesized  colloidally  with  5%  of  Te  dopant  stoichiometrically  added  during  the  seeded  growth  synthesis  of  wurtzite  CdSe  nanocrystals.  Through  this  colloidal  synthesis,  we  can  make  nanocrystals  with  a  much  broader  and  red-shifted  emission  than  their  undoped  counterparts,  proving  that  the  Te-dopant  has  been  successfully  incorporated  in  the  CdSe  matrix.  A  thin  hexagonal  CdS  shell  is  then  grown  around  the  Te-doped  CdSe  core  forming  a  dot-in-plate  (or  nut  in  bolt)  shape.  Using  elemental  mapping  techniques  we  characterize  the  distribution  of  elements  in  our  CdSe:Te/CdS  core/shell  nanocrystals.  Based  on  their  shape,  these  nanocrystals  can  self-assemble  into  a  highly  ordered  2D  superlattice  structure  with  a  heterogeneous  energy  landscape.  Using  Stimulated  Emission  Depletion  (STED)  microscopy,  we  measure  the  exciton  diffusion  lengths  in  these  superlattices  to  elucidate  the  role  of  the  Te-dopant  in  transport.In  Chapter  6,  we  discuss  how  erbium  doped  materials  are  powerful  candidates  for  quantum  information  sciences  due  to  their  long  electron  and  nuclear  spin  coherence  times,  as  well  as  telecom-wavelength  emission.  By  selecting  host  materials  with  interesting,  controllable  properties,  we  introduce  a  new  parameter  that  can  be  used  to  study  Er3+  emission.  In  this  work,  we  study  erbium  (Er3+)-doped  PbTiO3  thin  films.  PbTiO3  is  a  well-studied  ferroelectric  material  with  known  methods  of  engineering  different  domain  configurations  through  epitaxial  strain.  Through  changing  the  domain  configurations  of  the  PbTiO3  thin  films,  we  create  radically  different  crystal  fields  around  the  Er3+  dopant.  This  is  resolved  through  changes  in  the  Er3+  resonant  fluorescence  spectra,  tying  the  optical  properties  of  the  defect  directly  to  the  domain  configurations  of  the  ferroelectic  matrix.  Additionally,  a  second  set  of  peaks  are  observed  for  films  with  in-plane  polarization.  We  hypothesize  these  results  to  be  due  to  either  the  Er3+  substituting  different  sites  of  the  PbTiO3  crystal  or  due  to  differences  in  charges  between  the  Er3+  dopant  and  the  original  substituent  ion.  Understanding  the  relationship  between  the  Er3+  emission  and  the  epitaxial  strain  of  the  ferroelectric  matrix  lays  the  pathway  for  future  optical  studies  of  spin  manipulation  through  altering  ferroic  order  parameters.
■590    ▼aSchool  code:  0028.
■650  4▼aPhysical  chemistry.
■650  4▼aNanotechnology.
■650  4▼aMaterials  science.
■650  4▼aChemistry.
■653    ▼aExciton  dynamics
■653    ▼aFerroelectrics
■653    ▼aFluorescence  spectroscopy
■653    ▼aQuantum  dots
■690    ▼a0494
■690    ▼a0794
■690    ▼a0652
■690    ▼a0485
■71020▼aUniversity  of  California,  Berkeley▼bChemistry.
■7730  ▼tDissertations  Abstracts  International▼g86-03B.
■790    ▼a0028
■791    ▼aPh.D.
■792    ▼a2024
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T17161679▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    Info Détail de la recherche.

    • Réservation
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • My Folder
    Matériel
    Reg No. Call No. emplacement Status Lend Info
    TQ0033334 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * Les réservations sont disponibles dans le livre d'emprunt. Pour faire des réservations, S'il vous plaît cliquer sur le bouton de réservation

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치