본문

서브메뉴

On the Dynamics of Constrained Rigid Bodies.
On the Dynamics of Constrained Rigid Bodies.

상세정보

자료유형  
 학위논문
Control Number  
0017163000
International Standard Book Number  
9798384448396
Dewey Decimal Classification Number  
621
Main Entry-Personal Name  
Honein, Theresa Elie.
Publication, Distribution, etc. (Imprint  
[S.l.] : University of California, Berkeley., 2024
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2024
Physical Description  
109 p.
General Note  
Source: Dissertations Abstracts International, Volume: 86-03, Section: B.
General Note  
Advisor: O'Reilly, Oliver M.
Dissertation Note  
Thesis (Ph.D.)--University of California, Berkeley, 2024.
Summary, Etc.  
요약In this dissertation, the dynamics of three classic mechanical systems are examined using a combination of numerical and analytical methods. The three systems are a rolling sphere, a pair of rolling cylinders, and a stack of blocks. The kinematics and dynamics of each of these systems are governed by a set of constraints. For the sphere and cylinders the complexities of their dynamics are governed by a set of non-integrable (non-holonomic) constraints, while the complexity of the stack of blocks can be attributed to stick-slip phenomena, impacts, and a time-varying set of integrable constraints. For each of these classic systems, we establish new results.Consider a rigid body rolling with one point in contact with a fixed surface. Now suppose that the instantaneous point of contact traces out a closed path. As a demonstration of a phenomenon known as holonomy, the body will typically not return to its original orientation. The simplest demonstration of this phenomenon in rigid body dynamics occurs in the motion of a rolling sphere and finds application to path planning and reorientation of spherical robots. Motivated by recent works of Bryant and Johnson, we establish expressions for the change in orientation (i.e., holonomy) of a rolling sphere after its center of mass completes a rectangular path. The holonomy in this case can be quantified using an angle of rotation and an axis of rotation. We use numerical methods to show that all possible changes in orientation are possible using a single rectangular path. Based on the Euler angle parameterization of a rotation, we develop a more intuitive method to achieve a desired orientation using three rectangular paths. With regards to applications, the paths we discuss can be employed to achieve any desired reorientation of a spherical robot.The next mechanical system we examine was inspired by a common, yet hazardous, method of transporting cylindrical tanks used to carry compressed gas. The method involves rolling both tanks at opposite angles of inclination to the vertical. By propelling one of the tanks while maintaining point contact between the tanks, both tanks can be moved such that their centers of mass move in a straight line. The purpose of our work is to explore this locomotion mechanism. First, the problem of supporting an inclined cylinder in point contact with a rough surface is examined. The analysis shows that dependent on the geometry of the cylinder and the coefficient of static friction, a wide range of angles of inclination are feasible. The presence of non-integrable constraints on the motion of the rolling cylinder is explored using the concept of a holonomy. The problem of transporting two cylinders using the aforementioned mechanism is then analyzed with the help of Frobenius' integrability criterion for constraints and numerical simulations. Our result demonstrate the surprising mechanical advantage of transporting a pair of cylinders, the range of possible angles of inclination, and the forces needed to sustain the motion. The third mechanical system of interest is a collection of two-dimensional blocks stacked vertically. The surfaces of the blocks are rough. Of particular interest is the case where the bottom block in the stack is driven by simple harmonic motion. In the ensuing motion, a typical block in the stack can be at rest, sliding, rotating, or sliding and rotating with respect to the block underneath it. A single block in motion on a rough plane is well-known from studies in the 1980s to exhibit complex dynamics. The complexity of the dynamics of a stack of blocks dramatically increases as the number of blocks increases. In addition, the challenges to numerically investigate the dynamics are considerable. In this dissertation, we adapt a nonsmooth generalized-alpha method for systems with frictional contact to compute the dynamics of the stack. From the simulations we observe that high-frequency excitations of the bottom block tend to stabilize the stack. Our simulations also reveal the existence of an abundance of distinct solutions stemming from a unique initial configuration and excitation of the bottom block. Many, but not all, of these motions result in the toppling of the stack of blocks: a result that illustrates the surprisingly complex dynamics of a simple mechanical system and has application to robotic manipulation of stacks of objects.
Subject Added Entry-Topical Term  
Mechanical engineering.
Subject Added Entry-Topical Term  
Mathematics.
Subject Added Entry-Topical Term  
Engineering.
Subject Added Entry-Topical Term  
Robotics.
Index Term-Uncontrolled  
Rolling cylinders
Index Term-Uncontrolled  
Mechanical systems
Index Term-Uncontrolled  
Spherical robots
Index Term-Uncontrolled  
Sack of blocks
Index Term-Uncontrolled  
Harmonic motion
Added Entry-Corporate Name  
University of California, Berkeley Mechanical Engineering
Host Item Entry  
Dissertations Abstracts International. 86-03B.
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:657116

MARC

 008250224s2024        us  ||||||||||||||c||eng  d
■001000017163000
■00520250211152122
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798384448396
■035    ▼a(MiAaPQ)AAI31481777
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a621
■1001  ▼aHonein,  Theresa  Elie.
■24510▼aOn  the  Dynamics  of  Constrained  Rigid  Bodies.
■260    ▼a[S.l.]▼bUniversity  of  California,  Berkeley.  ▼c2024
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2024
■300    ▼a109  p.
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  86-03,  Section:  B.
■500    ▼aAdvisor:  O'Reilly,  Oliver  M.
■5021  ▼aThesis  (Ph.D.)--University  of  California,  Berkeley,  2024.
■520    ▼aIn  this  dissertation,  the  dynamics  of  three  classic  mechanical  systems  are  examined  using  a  combination  of  numerical  and  analytical  methods.  The  three  systems  are  a  rolling  sphere,  a  pair  of  rolling  cylinders,  and  a  stack  of  blocks.  The  kinematics  and  dynamics  of  each  of  these  systems  are  governed  by  a  set  of  constraints.  For  the  sphere  and  cylinders  the  complexities  of  their  dynamics  are  governed  by  a  set  of  non-integrable  (non-holonomic)  constraints,  while  the  complexity  of  the  stack  of  blocks  can  be  attributed  to  stick-slip  phenomena,  impacts,  and  a  time-varying  set  of  integrable  constraints.  For  each  of  these  classic  systems,  we  establish  new  results.Consider  a  rigid  body  rolling  with  one  point  in  contact  with  a  fixed  surface.  Now  suppose  that  the  instantaneous  point  of  contact  traces  out  a  closed  path.  As  a  demonstration  of  a  phenomenon  known  as  holonomy,  the  body  will  typically  not  return  to  its  original  orientation.  The  simplest  demonstration  of  this  phenomenon  in  rigid  body  dynamics  occurs  in  the  motion  of  a  rolling  sphere  and  finds  application  to  path  planning  and  reorientation  of  spherical  robots.  Motivated  by  recent  works  of  Bryant  and  Johnson,  we  establish  expressions  for  the  change  in  orientation  (i.e.,  holonomy)  of  a  rolling  sphere  after  its  center  of  mass  completes  a  rectangular  path.  The  holonomy  in  this  case  can  be  quantified  using  an  angle  of  rotation  and  an  axis  of  rotation.  We  use  numerical  methods  to  show  that  all  possible  changes  in  orientation  are  possible  using  a  single  rectangular  path.  Based  on  the  Euler  angle  parameterization  of  a  rotation,  we  develop  a  more  intuitive  method  to  achieve  a  desired  orientation  using  three  rectangular  paths.  With  regards  to  applications,  the  paths  we  discuss  can  be  employed  to  achieve  any  desired  reorientation  of  a  spherical  robot.The  next  mechanical  system  we  examine  was  inspired  by  a  common,  yet  hazardous,  method  of  transporting  cylindrical  tanks  used  to  carry  compressed  gas.  The  method  involves  rolling  both  tanks  at  opposite  angles  of  inclination  to  the  vertical.  By  propelling  one  of  the  tanks  while  maintaining  point  contact  between  the  tanks,  both  tanks  can  be  moved  such  that  their  centers  of  mass  move  in  a  straight  line.  The  purpose  of  our  work  is  to  explore  this  locomotion  mechanism.  First,  the  problem  of  supporting  an  inclined  cylinder  in  point  contact  with  a  rough  surface  is  examined.  The  analysis  shows  that  dependent  on  the  geometry  of  the  cylinder  and  the  coefficient  of  static  friction,  a  wide  range  of  angles  of  inclination  are  feasible.  The  presence  of  non-integrable  constraints  on  the  motion  of  the  rolling  cylinder  is  explored  using  the  concept  of  a  holonomy.  The  problem  of  transporting  two  cylinders  using  the  aforementioned  mechanism  is  then  analyzed  with  the  help  of  Frobenius'  integrability  criterion  for  constraints  and  numerical  simulations.  Our  result  demonstrate  the  surprising  mechanical  advantage  of  transporting  a  pair  of  cylinders,  the  range  of  possible  angles  of  inclination,  and  the  forces  needed  to  sustain  the  motion. The  third  mechanical  system  of  interest  is  a  collection  of  two-dimensional  blocks  stacked  vertically.  The  surfaces  of  the  blocks  are  rough.  Of  particular  interest  is  the  case  where  the  bottom  block  in  the  stack  is  driven  by  simple  harmonic  motion.  In  the  ensuing  motion,  a  typical  block  in  the  stack  can  be  at  rest,  sliding,  rotating,  or  sliding  and  rotating  with  respect  to  the  block  underneath  it.  A  single  block  in  motion  on  a  rough  plane  is  well-known  from  studies  in  the  1980s  to  exhibit  complex  dynamics.  The  complexity  of  the  dynamics  of  a  stack  of  blocks  dramatically  increases  as  the  number  of  blocks  increases.  In  addition,  the  challenges  to  numerically  investigate  the  dynamics  are  considerable.  In  this  dissertation,  we  adapt  a  nonsmooth  generalized-alpha  method  for  systems  with  frictional  contact  to  compute  the  dynamics  of  the  stack.  From  the  simulations  we  observe  that  high-frequency  excitations  of  the  bottom  block  tend  to  stabilize  the  stack.  Our  simulations  also  reveal  the  existence  of  an  abundance  of  distinct  solutions  stemming  from  a  unique  initial  configuration  and  excitation  of  the  bottom  block.  Many,  but  not  all,  of  these  motions  result  in  the  toppling  of  the  stack  of  blocks:  a  result  that  illustrates  the  surprisingly  complex  dynamics  of  a  simple  mechanical  system  and  has  application  to  robotic  manipulation  of  stacks  of  objects.
■590    ▼aSchool  code:  0028.
■650  4▼aMechanical  engineering.
■650  4▼aMathematics.
■650  4▼aEngineering.
■650  4▼aRobotics.
■653    ▼aRolling  cylinders
■653    ▼aMechanical  systems
■653    ▼aSpherical  robots
■653    ▼aSack  of  blocks
■653    ▼aHarmonic  motion
■690    ▼a0548
■690    ▼a0405
■690    ▼a0537
■690    ▼a0771
■71020▼aUniversity  of  California,  Berkeley▼bMechanical  Engineering.
■7730  ▼tDissertations  Abstracts  International▼g86-03B.
■790    ▼a0028
■791    ▼aPh.D.
■792    ▼a2024
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T17163000▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    高级搜索信息

    • 预订
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • 我的文件夹
    材料
    注册编号 呼叫号码. 收藏 状态 借信息.
    TQ0033326 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    *保留在借用的书可用。预订,请点击预订按钮

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치