본문

서브메뉴

Optimizing Emerging Applications Through Software Hardware Co-Design.
Optimizing Emerging Applications Through Software Hardware Co-Design.

상세정보

자료유형  
 학위논문
Control Number  
0017164347
International Standard Book Number  
9798384041849
Dewey Decimal Classification Number  
004
Main Entry-Personal Name  
Chen, Yuhan.
Publication, Distribution, etc. (Imprint  
[S.l.] : University of Michigan., 2024
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2024
Physical Description  
154 p.
General Note  
Source: Dissertations Abstracts International, Volume: 86-03, Section: B.
General Note  
Advisor: Mudge, Trevor N.;Talati, Nishil.
Dissertation Note  
Thesis (Ph.D.)--University of Michigan, 2024.
Summary, Etc.  
요약Emerging applications such as video transcoding and graph algorithms have seen fast development and broad adoption recently. It is crucial to improve the performance of these emerging applications for cost-efficiency and scalability. This thesis focuses on video transcoding and graph algorithms and uses software-hardware co-design to optimize their execution.Video transcoding is rapidly growing as the demand for online streaming services continues to strive, and understanding the hardware bottleneck in performing video transcoding is the stepping stone to develop dedicated hardware for it.Graph data structure is widely used in modeling complicated relationships between entities. Algorithms and applications that utilize the expressiveness of graphs are rapidly evolving and employed in various domains like social networks, chemistry, biology, and physics. With the expanding family of graph algorithms and the exploding size of real-world graphs, it is hard for hardware to keep up with the ever-growing demand for processing power for graph algorithms. To make the issue worse, the irregular memory access pattern in graph algorithms makes it hard to fully utilize traditional hardware like CPUs and GPUs.In this thesis, I propose software and hardware co-design to improve the performance of emerging applications. At a high level, I first present hardware characterization that reveals the hardware bottlenecks with the change in software parameters. Then I benchmark the performance of the most popular graph sparsification algorithms on their performance in preserving graph properties. Finally, I propose a power-efficient accelerator supporting multiple dataflows for Graph Convolutional Networks.Specifically, first, I perform CPU characterization on video transcoding, revealing the hardware bottlenecks (e.g. frontend, backend, branch misprediction, stalls) and how they shift with software parameters. Second, I use graph sparsification to tackle the exploding size of real-world graphs. I conduct a comprehensive benchmark on 12 graph sparsification algorithms, exploring their performance in preserving 16 essential graph properties on 14 real-world graphs, and give insights into how to choose the appropriate sparsification method for different down-stream tasks. Last, I present PEDAL, a power-efficient Graph Convolutional Network (GCN) accelerator designed to support multiple dataflows, achieving both high execution efficiency and flexibility.
Subject Added Entry-Topical Term  
Computer science.
Subject Added Entry-Topical Term  
Information technology.
Index Term-Uncontrolled  
Software-hardware co-design
Index Term-Uncontrolled  
Emerging applications
Index Term-Uncontrolled  
Graph algorithms
Index Term-Uncontrolled  
Accelerator
Index Term-Uncontrolled  
Graph sparsification
Added Entry-Corporate Name  
University of Michigan Computer Science & Engineering
Host Item Entry  
Dissertations Abstracts International. 86-03B.
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:657079

MARC

 008250224s2024        us  ||||||||||||||c||eng  d
■001000017164347
■00520250211152951
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798384041849
■035    ▼a(MiAaPQ)AAI31631039
■035    ▼a(MiAaPQ)umichrackham005614
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a004
■1001  ▼aChen,  Yuhan.
■24510▼aOptimizing  Emerging  Applications  Through  Software  Hardware  Co-Design.
■260    ▼a[S.l.]▼bUniversity  of  Michigan.  ▼c2024
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2024
■300    ▼a154  p.
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  86-03,  Section:  B.
■500    ▼aAdvisor:  Mudge,  Trevor  N.;Talati,  Nishil.
■5021  ▼aThesis  (Ph.D.)--University  of  Michigan,  2024.
■520    ▼aEmerging  applications  such  as  video  transcoding  and  graph  algorithms  have  seen  fast  development  and  broad  adoption  recently.  It  is  crucial  to  improve  the  performance  of  these  emerging  applications  for  cost-efficiency  and  scalability.  This  thesis  focuses  on  video  transcoding  and  graph  algorithms  and  uses  software-hardware  co-design  to  optimize  their  execution.Video  transcoding  is  rapidly  growing  as  the  demand  for  online  streaming  services  continues  to  strive,  and  understanding  the  hardware  bottleneck  in  performing  video  transcoding  is  the  stepping  stone  to  develop  dedicated  hardware  for  it.Graph  data  structure  is  widely  used  in  modeling  complicated  relationships  between  entities.  Algorithms  and  applications  that  utilize  the  expressiveness  of  graphs  are  rapidly  evolving  and  employed  in  various  domains  like  social  networks,  chemistry,  biology,  and  physics.  With  the  expanding  family  of  graph  algorithms  and  the  exploding  size  of  real-world  graphs,  it  is  hard  for  hardware  to  keep  up  with  the  ever-growing  demand  for  processing  power  for  graph  algorithms.  To  make  the  issue  worse,  the  irregular  memory  access  pattern  in  graph  algorithms  makes  it  hard  to  fully  utilize  traditional  hardware  like  CPUs  and  GPUs.In  this  thesis,  I  propose  software  and  hardware  co-design  to  improve  the  performance  of  emerging  applications.  At  a  high  level,  I  first  present  hardware  characterization  that  reveals  the  hardware  bottlenecks  with  the  change  in  software  parameters.  Then  I  benchmark  the  performance  of  the  most  popular  graph  sparsification  algorithms  on  their  performance  in  preserving  graph  properties.  Finally,  I  propose  a  power-efficient  accelerator  supporting  multiple  dataflows  for  Graph  Convolutional  Networks.Specifically,  first,  I  perform  CPU  characterization  on  video  transcoding,  revealing  the  hardware  bottlenecks  (e.g.  frontend,  backend,  branch  misprediction,  stalls)  and  how  they  shift  with  software  parameters.  Second,  I  use  graph  sparsification  to  tackle  the  exploding  size  of  real-world  graphs.  I  conduct  a  comprehensive  benchmark  on  12  graph  sparsification  algorithms,  exploring  their  performance  in  preserving  16  essential  graph  properties  on  14  real-world  graphs,  and  give  insights  into  how  to  choose  the  appropriate  sparsification  method  for  different  down-stream  tasks.  Last,  I  present  PEDAL,  a  power-efficient  Graph  Convolutional  Network  (GCN)  accelerator  designed  to  support  multiple  dataflows,  achieving  both  high  execution  efficiency  and  flexibility.
■590    ▼aSchool  code:  0127.
■650  4▼aComputer  science.
■650  4▼aInformation  technology.
■653    ▼aSoftware-hardware  co-design
■653    ▼aEmerging  applications
■653    ▼aGraph  algorithms
■653    ▼aAccelerator
■653    ▼aGraph  sparsification
■690    ▼a0984
■690    ▼a0489
■71020▼aUniversity  of  Michigan▼bComputer  Science  &  Engineering.
■7730  ▼tDissertations  Abstracts  International▼g86-03B.
■790    ▼a0127
■791    ▼aPh.D.
■792    ▼a2024
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T17164347▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    신착도서 더보기
    관련도서 더보기
    최근 3년간 통계입니다.

    소장정보

    • 예약
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • 나의폴더
    소장자료
    등록번호 청구기호 소장처 대출가능여부 대출정보
    TQ0033297 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * 대출중인 자료에 한하여 예약이 가능합니다. 예약을 원하시면 예약버튼을 클릭하십시오.

    해당 도서를 다른 이용자가 함께 대출한 도서

    관련도서

    관련 인기도서

    도서위치