본문

서브메뉴

Supporting Preservice Teachers' Computational Thinking Practices in an Engineering Content Course.
Supporting Preservice Teachers' Computational Thinking Practices in an Engineering Content Course.

상세정보

자료유형  
 학위논문
Control Number  
0017164395
International Standard Book Number  
9798346393078
Dewey Decimal Classification Number  
741
Main Entry-Personal Name  
McLaughlin, Gozde.
Publication, Distribution, etc. (Imprint  
[S.l.] : The Pennsylvania State University., 2024
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2024
Physical Description  
121 p.
General Note  
Source: Dissertations Abstracts International, Volume: 86-05, Section: A.
General Note  
Advisor: Farris, Amy Voss.
Dissertation Note  
Thesis (Ph.D.)--The Pennsylvania State University, 2024.
Summary, Etc.  
요약Knowledge-producing practices in sciences and engineering increasingly use computational means for modeling and working with data. Despite consensus regarding the importance of computational thinking in science and engineering, scholars differ in conceptualization of the primary purposes and role of its integration in K-12 science (Kafai & Proctor, 2022; NRC, 2010). In this dissertation, I define computational thinking (CT) as using, constructing or assessing computational tools to understand or describe a phenomenon. In science education, CT practices range from coding and computational problem solving to utilizing or constructing simulations or models and data practices (Sengupta et al., 2013; Weintrop et al., 2016). Additionally, CT practices involve unplugged forms such as formulating rules for an imagined computational agent to execute (Yadav et al., 2014).Given that one of the primary objectives of recent science education reform is aligning science learning more closely with the practices of scientists (Penuel, 2016), it is not surprising that "using mathematics and computational thinking" was included among the eight science and engineering practices of the Framework for K12 Science Education (NRC, 2012) and recent standards documents, including the Next Generation Science Standards (NGSS) and the Pennsylvania Science, Technology & Engineering, Environmental Literacy & Sustainability (STEELS) Standards. However, standards document for what students should know and be able to do are relatively silent on pedagogy (Larkin, 2019). The need to articulate what it means to support students' ongoing changes in thinking through scientific practice has led to a robust literature on science teaching practices (Windschitl et al., 2020; Windschitl & Calabrese Barton, 2016; Thompson, et al., 2019) and preparing science teachers (Stroupe et al., 2020). For example, science education scholars have well-articulated teaching practices for supporting scientific modeling (e.g., Windschitl et al., 2020) and supporting students' argumentation (e.g., ZembalSaul et al., 2013).However, how and why to teach computational thinking practice in science remains an under-theorized area. Unlike other science and engineering practices, definitions of computational thinking have been unsettled. Many teachers feel uncertain about how to integrate computational thinking practices in science classrooms (Kang et al., 2018), since they themselves did not engage in these practices as students. Overall, existing studies of science teachers learning about CT practices demonstrate that teachers generally feel unprepared to incorporate computational thinking into their science classrooms (Haag & Megowan, 2015; Kang et al., 2018).The literature concerning science teacher education demonstrates that preservice teachers (PSTs) face similar challenges in integrating computational thinking in science. Even after substantial course emphasis on the integration of CT practices in science, PSTs continue to make superficial connections between components of CT and science curriculum (Walton et al., 2020) and they were largely unable to create curriculum materials that meaningfully integrated CT with disciplinary content (Mouza et al., 2017; Vasconcelos & Kim, 2020). Therefore, there is a growing need to support teachers and incoming teachers' computational thinking. In my dissertation, I tackle this issue through three studies designed to support preservice teachers' computational thinking as an epistemic practice.Competing conceptions of the role of computational thinking practices in science learningIn order for teachers and preservice teachers to meaningfully integrate CT in science, a wellarticulated and epistemically-oriented rationale for the roles and purposes of computational thinking practices in science is necessary.
Subject Added Entry-Topical Term  
Design.
Subject Added Entry-Topical Term  
Educational technology.
Subject Added Entry-Topical Term  
Epistemology.
Subject Added Entry-Topical Term  
Curricula.
Subject Added Entry-Topical Term  
Teacher education.
Added Entry-Corporate Name  
The Pennsylvania State University.
Host Item Entry  
Dissertations Abstracts International. 86-05A.
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:657074

MARC

 008250224s2024        us  ||||||||||||||c||eng  d
■001000017164395
■00520250211152957
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798346393078
■035    ▼a(MiAaPQ)AAI31631214
■035    ▼a(MiAaPQ)PennState23406gjt5160
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a741
■1001  ▼aMcLaughlin,  Gozde.
■24510▼aSupporting  Preservice  Teachers'  Computational  Thinking  Practices  in  an  Engineering  Content  Course.
■260    ▼a[S.l.]▼bThe  Pennsylvania  State  University.  ▼c2024
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2024
■300    ▼a121  p.
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  86-05,  Section:  A.
■500    ▼aAdvisor:  Farris,  Amy  Voss.
■5021  ▼aThesis  (Ph.D.)--The  Pennsylvania  State  University,  2024.
■520    ▼aKnowledge-producing  practices  in  sciences  and  engineering  increasingly  use  computational  means  for  modeling  and  working  with  data.  Despite  consensus  regarding  the  importance  of  computational  thinking  in  science  and  engineering,  scholars  differ  in  conceptualization  of  the  primary  purposes  and  role  of  its  integration  in  K-12  science  (Kafai  &  Proctor,  2022;  NRC,  2010).  In  this  dissertation,  I  define  computational  thinking  (CT)  as  using,  constructing  or  assessing  computational  tools  to  understand  or  describe  a  phenomenon.  In  science  education,  CT  practices  range  from  coding  and  computational  problem  solving  to  utilizing  or  constructing  simulations  or  models  and  data  practices  (Sengupta  et  al.,  2013;  Weintrop  et  al.,  2016).  Additionally,  CT  practices  involve  unplugged  forms  such  as  formulating  rules  for  an  imagined  computational  agent  to  execute  (Yadav  et  al.,  2014).Given  that  one  of  the  primary  objectives  of  recent  science  education  reform  is  aligning  science  learning  more  closely  with  the  practices  of  scientists  (Penuel,  2016),  it  is  not  surprising  that  "using  mathematics  and  computational  thinking"  was  included  among  the  eight  science  and  engineering  practices  of  the  Framework  for  K12  Science  Education  (NRC,  2012)  and  recent  standards  documents,  including  the  Next  Generation  Science  Standards  (NGSS)  and  the  Pennsylvania  Science,  Technology  &  Engineering,  Environmental  Literacy  &  Sustainability  (STEELS)  Standards.  However,  standards  document  for  what  students  should  know  and  be  able  to  do  are  relatively  silent  on  pedagogy  (Larkin,  2019).  The  need  to  articulate  what  it  means  to  support  students'  ongoing  changes  in  thinking  through  scientific  practice  has  led  to  a  robust  literature  on  science  teaching  practices  (Windschitl  et  al.,  2020;  Windschitl  &  Calabrese  Barton,  2016;  Thompson,  et  al.,  2019)  and  preparing  science  teachers  (Stroupe  et  al.,  2020).  For  example,  science  education  scholars  have  well-articulated  teaching  practices  for  supporting  scientific  modeling  (e.g.,  Windschitl  et  al.,  2020)  and  supporting  students'  argumentation  (e.g.,  ZembalSaul  et  al.,  2013).However,  how  and  why  to  teach  computational  thinking  practice  in  science  remains  an  under-theorized  area.  Unlike  other  science  and  engineering  practices,  definitions  of  computational  thinking  have  been  unsettled.  Many  teachers  feel  uncertain  about  how  to  integrate  computational  thinking  practices  in  science  classrooms  (Kang  et  al.,  2018),  since  they  themselves  did  not  engage  in  these  practices  as  students.  Overall,  existing  studies  of  science  teachers  learning  about  CT  practices  demonstrate  that  teachers  generally  feel  unprepared  to  incorporate  computational  thinking  into  their  science  classrooms  (Haag  &  Megowan,  2015;  Kang  et  al.,  2018).The  literature  concerning  science  teacher  education  demonstrates  that  preservice  teachers  (PSTs)  face  similar  challenges  in  integrating  computational  thinking  in  science.  Even  after  substantial  course  emphasis  on  the  integration  of  CT  practices  in  science,  PSTs  continue  to  make  superficial  connections  between  components  of  CT  and  science  curriculum  (Walton  et  al.,  2020)  and  they  were  largely  unable  to  create  curriculum  materials  that  meaningfully  integrated  CT  with  disciplinary  content  (Mouza  et  al.,  2017;  Vasconcelos  &  Kim,  2020).  Therefore,  there  is  a  growing  need  to  support  teachers  and  incoming  teachers'  computational  thinking.  In  my  dissertation,  I  tackle  this  issue  through  three  studies  designed  to  support  preservice  teachers'  computational  thinking  as  an  epistemic  practice.Competing  conceptions  of  the  role  of  computational  thinking  practices  in  science  learningIn  order  for  teachers  and  preservice  teachers  to  meaningfully  integrate  CT  in  science,  a  wellarticulated  and  epistemically-oriented  rationale  for  the  roles  and  purposes  of  computational  thinking  practices  in  science  is  necessary.
■590    ▼aSchool  code:  0176.
■650  4▼aDesign.
■650  4▼aEducational  technology.
■650  4▼aEpistemology.
■650  4▼aCurricula.
■650  4▼aTeacher  education.
■690    ▼a0389
■690    ▼a0710
■690    ▼a0393
■690    ▼a0530
■71020▼aThe  Pennsylvania  State  University.
■7730  ▼tDissertations  Abstracts  International▼g86-05A.
■790    ▼a0176
■791    ▼aPh.D.
■792    ▼a2024
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T17164395▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    Buch Status

    • Reservierung
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • Meine Mappe
    Sammlungen
    Registrierungsnummer callnumber Standort Verkehr Status Verkehr Info
    TQ0033281 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * Kredite nur für Ihre Daten gebucht werden. Wenn Sie buchen möchten Reservierungen, klicken Sie auf den Button.

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치