본문

서브메뉴

Neutrophil Heterogeneity and Transmigration: Decoding Molecular Profiles Through Multi-Omic Analysis and In Vitro Mimicry of the Venular Wall.
Neutrophil Heterogeneity and Transmigration: Decoding Molecular Profiles Through Multi-Omic Analysis and In Vitro Mimicry of the Venular Wall.

상세정보

자료유형  
 학위논문
Control Number  
0017160538
International Standard Book Number  
9798383482049
Dewey Decimal Classification Number  
616.079
Main Entry-Personal Name  
Morales, Laura C.
Publication, Distribution, etc. (Imprint  
[S.l.] : Yale University., 2024
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2024
Physical Description  
192 p.
General Note  
Source: Dissertations Abstracts International, Volume: 86-01, Section: B.
General Note  
Advisor: Gonzalez, Anjelica L.
Dissertation Note  
Thesis (Ph.D.)--Yale University, 2024.
Summary, Etc.  
요약Neutrophils are crucial innate immune cells that comprise about 50-70% of the white blood cell population in the human peripheral circulation. These polymorphonuclear leukocytes play a pivotal role in the innate immune system, acting as the primary line of defense against pathogens and facilitating tissue repair. Neutrophils exhibit a diverse repertoire of cytotoxic mechanisms to eliminate offending pathogenic agents and promote the resolution of inflammation. These include phagocytosis, degranulation, generating reactive oxygen species, and forming neutrophil extracellular traps, underscoring their versatility in host defense. A critical aspect of neutrophil functionality is their capacity to infiltrate sites of injury or infection, facilitated by transmigration across the venular wall. While the interactions between neutrophils and the vascular endothelium (EC) have been studied in detail, the roles of pericytes (PCs) and the basement membrane (BM) in regulating neutrophil trafficking, phenotype, and function remain insufficiently explored. Despite their pivotal role in the immune response, aberrant neutrophil behavior and recruitment significantly contribute to the initiation and progression of various inflammatory conditions. These include, but are not limited to, cancer, autoimmune disorders, diabetes mellitus, atherosclerosis, and sepsis. Consequently, elucidating the complex regulatory mechanisms governing the process of neutrophil trafficking and activity in the extravascular space emerges as a question of profound biological and clinical importance.Expanding upon the complex roles of neutrophils in host defense and inflammatory disorders, the notion of neutrophil heterogeneity introduces an additional dimension of complexity to their roles in homeostasis and disease. Traditionally regarded as terminally-differentiated homogeneous effector cells with discrete functions, accumulating evidence challenges this notion, revealing high complexity and diversity within the neutrophil population. Despite ongoing research, a consensus on the molecular signatures that definitively and reproducibly distinguish distinct neutrophil subsets in human peripheral circulation has yet to be established. The debate extends to whether these subsets represent true, distinct lineages or reflect varying states of maturation or differentiation. The classification of neutrophil subsets has historically depended on characteristics such as morphology, localization, surface marker expression, and density. These criteria, however, have proven insufficient for a comprehensive delineation of the neutrophil compartment, leading to the identification of overlapping subpopulations. This has further complicated the nomenclature and fueled controversies surrounding associated effector functions and ontogeny. Moreover, the bulk of the research has mainly concentrated on neutrophils in pathological contexts, with a relatively limited focus on their regulation and function in non-inflammatory baseline conditions, underscoring the need to properly characterize these leukocytes to understand their activity in physiological and pathological states.Therefore, the work presented here seeks to provide a comprehensive characterization of the transcriptional and proteomic diversity of human neutrophils within healthy peripheral circulation. To achieve this, we employed a combination of single-cell RNA sequencing (scRNA-seq) and advanced multiplex flow cytometry analyses to examine the transcriptional and proteomic landscapes of human neutrophils in healthy peripheral blood, alongside assessing their migratory capabilities and phenotypic alterations post-transmigration. Our findings identify three transcriptionally and proteomically distinct neutrophil subsets, each characterized by diverse effector functions and migratory patterns, uniquely altered upon crossing the vascular wall. As we come to identify inherent differences in neutrophil profiles that contribute to vascular transmigration, characteristics of the venular wall itself can lead to uncontrolled leukocyte extravasation, further exacerbating the inflammatory response. Identifying cellular and molecular determinants that contribute to neutrophil recruitment is challenging to accomplish in vivo and requires the development and application of experimental in vitro models. Such models are essential for validating hypotheses and comprehensively understanding the fundamental mechanisms and variations involved in neutrophil extravasation. These should not only mimic physiologically relevant conditions but also enable the real-time observation of rapid intercellular dynamics, thereby facilitating a detailed understanding of the events involved in neutrophil trafficking.Accordingly, this work introduces a novel approach toward addressing the existing limitations of current in vitro models of neutrophil recruitment. We report the development of a highly tunable submicron-level mesh scaffold that resembles the biochemical and biophysical properties of the vascular basement membrane (vBM). This bioengineered model was fabricated using electrospinning to create polyethylene glycol (PEG) fibrillar networks with adjustable parameters such as nanofiber diameter, density, and alignment. Recognizing the critical need for further exploration of the biophysical properties of the vBM, we employed the use of second harmonic imaging and atomic force microscopy to characterize the human microvascular BM's morphology and mechanical properties, which served as a guide for the design constraints of our in vitro system. Rendering the scaffold bioactive via the conjugation of adhesive moieties at the surface of the PEG fibers enabled the culture of microvascular EC and PC to create a composite construct of the microvascular wall. Moreover, we integrated our vBM mimetic with an in-house, customized imaging chamber to evaluate the interactions between migrating leukocytes and the vascular wall components using 4D microscopy. This allowed us to observe real-time interactions between neutrophils and each component of the microvascular wall, advancing our understanding of neutrophil extravasation. Overall, the research delineated herein addresses a critical gap in the current understanding of neutrophil phenotypes and their functional roles during vascular transmigration. It enriches our knowledge of neutrophils in healthy peripheral circulation, providing a more detailed perspective of their contribution to homeostasis and immune function. The introduction of a versatile and highly tunable vBM-mimetic system offers significant potential for further insights into cellular dynamics and interactions within the microvascular compartment in real time. By integrating this system with transcriptomic and proteomic analyses, this tool can uncover the biological functions and behaviors unique to transmigrating neutrophils, thereby elucidating their implications in both health and disease.
Subject Added Entry-Topical Term  
Immunology.
Subject Added Entry-Topical Term  
Biomedical engineering.
Subject Added Entry-Topical Term  
Biology.
Index Term-Uncontrolled  
Basement Membrane
Index Term-Uncontrolled  
Heterogeneity
Index Term-Uncontrolled  
Inflammation
Index Term-Uncontrolled  
Microvasculature
Index Term-Uncontrolled  
Neutrophils
Index Term-Uncontrolled  
Transmigration
Added Entry-Corporate Name  
Yale University Biomedical Engineering
Host Item Entry  
Dissertations Abstracts International. 86-01B.
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:657039

MARC

 008250224s2024        us  ||||||||||||||c||eng  d
■001000017160538
■00520250211151036
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798383482049
■035    ▼a(MiAaPQ)AAI30997647
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a616.079
■1001  ▼aMorales,  Laura  C.
■24510▼aNeutrophil  Heterogeneity  and  Transmigration:  Decoding  Molecular  Profiles  Through  Multi-Omic  Analysis  and  In  Vitro  Mimicry  of  the  Venular  Wall.
■260    ▼a[S.l.]▼bYale  University.  ▼c2024
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2024
■300    ▼a192  p.
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  86-01,  Section:  B.
■500    ▼aAdvisor:  Gonzalez,  Anjelica  L.
■5021  ▼aThesis  (Ph.D.)--Yale  University,  2024.
■520    ▼aNeutrophils  are  crucial  innate  immune  cells  that  comprise  about  50-70%  of  the  white  blood  cell  population  in  the  human  peripheral  circulation.  These  polymorphonuclear  leukocytes  play  a  pivotal  role  in  the  innate  immune  system,  acting  as  the  primary  line  of  defense  against  pathogens  and  facilitating  tissue  repair.  Neutrophils  exhibit  a  diverse  repertoire  of  cytotoxic  mechanisms  to  eliminate  offending  pathogenic  agents  and  promote  the  resolution  of  inflammation.  These  include  phagocytosis,  degranulation,  generating  reactive  oxygen  species,  and  forming  neutrophil  extracellular  traps,  underscoring  their  versatility  in  host  defense.  A  critical  aspect  of  neutrophil  functionality  is  their  capacity  to  infiltrate  sites  of  injury  or  infection,  facilitated  by  transmigration  across  the  venular  wall.  While  the  interactions  between  neutrophils  and  the  vascular  endothelium  (EC)  have  been  studied  in  detail,  the  roles  of  pericytes  (PCs)  and  the  basement  membrane  (BM)  in  regulating  neutrophil  trafficking,  phenotype,  and  function  remain  insufficiently  explored.  Despite  their  pivotal  role  in  the  immune  response,  aberrant  neutrophil  behavior  and  recruitment  significantly  contribute  to  the  initiation  and  progression  of  various  inflammatory  conditions.  These  include,  but  are  not  limited  to,  cancer,  autoimmune  disorders,  diabetes  mellitus,  atherosclerosis,  and  sepsis.  Consequently,  elucidating  the  complex  regulatory  mechanisms  governing  the  process  of  neutrophil  trafficking  and  activity  in  the  extravascular  space  emerges  as  a  question  of  profound  biological  and  clinical  importance.Expanding  upon  the  complex  roles  of  neutrophils  in  host  defense  and  inflammatory  disorders,  the  notion  of  neutrophil  heterogeneity  introduces  an  additional  dimension  of  complexity  to  their  roles  in  homeostasis  and  disease.  Traditionally  regarded  as  terminally-differentiated  homogeneous  effector  cells  with  discrete  functions,  accumulating  evidence  challenges  this  notion,  revealing  high  complexity  and  diversity  within  the  neutrophil  population.  Despite  ongoing  research,  a  consensus  on  the  molecular  signatures  that  definitively  and  reproducibly  distinguish  distinct  neutrophil  subsets  in  human  peripheral  circulation  has  yet  to  be  established.  The  debate  extends  to  whether  these  subsets  represent  true,  distinct  lineages  or  reflect  varying  states  of  maturation  or  differentiation.  The  classification  of  neutrophil  subsets  has  historically  depended  on  characteristics  such  as  morphology,  localization,  surface  marker  expression,  and  density.  These  criteria,  however,  have  proven  insufficient  for  a  comprehensive  delineation  of  the  neutrophil  compartment,  leading  to  the  identification  of  overlapping  subpopulations.  This  has  further  complicated  the  nomenclature  and  fueled  controversies  surrounding  associated  effector  functions  and  ontogeny.  Moreover,  the  bulk  of  the  research  has  mainly  concentrated  on  neutrophils  in  pathological  contexts,  with  a  relatively  limited  focus  on  their  regulation  and  function  in  non-inflammatory  baseline  conditions,  underscoring  the  need  to  properly  characterize  these  leukocytes  to  understand  their  activity  in  physiological  and  pathological  states.Therefore,  the  work  presented  here  seeks  to  provide  a  comprehensive  characterization  of  the  transcriptional  and  proteomic  diversity  of  human  neutrophils  within  healthy  peripheral  circulation.  To  achieve  this,  we  employed  a  combination  of  single-cell  RNA  sequencing  (scRNA-seq)  and  advanced  multiplex  flow  cytometry  analyses  to  examine  the  transcriptional  and  proteomic  landscapes  of  human  neutrophils  in  healthy  peripheral  blood,  alongside  assessing  their  migratory  capabilities  and  phenotypic  alterations  post-transmigration.  Our  findings  identify  three  transcriptionally  and  proteomically  distinct  neutrophil  subsets,  each  characterized  by  diverse  effector  functions  and  migratory  patterns,  uniquely  altered  upon  crossing  the  vascular  wall.  As  we  come  to  identify  inherent  differences  in  neutrophil  profiles  that  contribute  to  vascular  transmigration,  characteristics  of  the  venular  wall  itself  can  lead  to  uncontrolled  leukocyte  extravasation,  further  exacerbating  the  inflammatory  response.  Identifying  cellular  and  molecular  determinants  that  contribute  to  neutrophil  recruitment  is  challenging  to  accomplish  in  vivo  and  requires  the  development  and  application  of  experimental  in  vitro  models.  Such  models  are  essential  for  validating  hypotheses  and  comprehensively  understanding  the  fundamental  mechanisms  and  variations  involved  in  neutrophil  extravasation.  These  should  not  only  mimic  physiologically  relevant  conditions  but  also  enable  the  real-time  observation  of  rapid  intercellular  dynamics,  thereby  facilitating  a  detailed  understanding  of  the  events  involved  in  neutrophil  trafficking.Accordingly,  this  work  introduces  a  novel  approach  toward  addressing  the  existing  limitations  of  current  in  vitro  models  of  neutrophil  recruitment.  We  report  the  development  of  a  highly  tunable  submicron-level  mesh  scaffold  that  resembles  the  biochemical  and  biophysical  properties  of  the  vascular  basement  membrane  (vBM).  This  bioengineered  model  was  fabricated  using  electrospinning  to  create  polyethylene  glycol  (PEG)  fibrillar  networks  with  adjustable  parameters  such  as  nanofiber  diameter,  density,  and  alignment.  Recognizing  the  critical  need  for  further  exploration  of  the  biophysical  properties  of  the  vBM,  we  employed  the  use  of  second  harmonic  imaging  and  atomic  force  microscopy  to  characterize  the  human  microvascular  BM's  morphology  and  mechanical  properties,  which  served  as  a  guide  for  the  design  constraints  of  our  in  vitro  system.  Rendering  the  scaffold  bioactive  via  the  conjugation  of  adhesive  moieties  at  the  surface  of  the  PEG  fibers  enabled  the  culture  of  microvascular  EC  and  PC  to  create  a  composite  construct  of  the  microvascular  wall.  Moreover,  we  integrated  our  vBM  mimetic  with  an  in-house,  customized  imaging  chamber  to  evaluate  the  interactions  between  migrating  leukocytes  and  the  vascular  wall  components  using  4D  microscopy.  This  allowed  us  to  observe  real-time  interactions  between  neutrophils  and  each  component  of  the  microvascular  wall,  advancing  our  understanding  of  neutrophil  extravasation.  Overall,  the  research  delineated  herein  addresses  a  critical  gap  in  the  current  understanding  of  neutrophil  phenotypes  and  their  functional  roles  during  vascular  transmigration.  It  enriches  our  knowledge  of  neutrophils  in  healthy  peripheral  circulation,  providing  a  more  detailed  perspective  of  their  contribution  to  homeostasis  and  immune  function.  The  introduction  of  a  versatile  and  highly  tunable  vBM-mimetic  system  offers  significant  potential  for  further  insights  into  cellular  dynamics  and  interactions  within  the  microvascular  compartment  in  real  time.  By  integrating  this  system  with  transcriptomic  and  proteomic  analyses,  this  tool  can  uncover  the  biological  functions  and  behaviors  unique  to  transmigrating  neutrophils,  thereby  elucidating  their  implications  in  both  health  and  disease.
■590    ▼aSchool  code:  0265.
■650  4▼aImmunology.
■650  4▼aBiomedical  engineering.
■650  4▼aBiology.
■653    ▼aBasement  Membrane
■653    ▼aHeterogeneity
■653    ▼aInflammation
■653    ▼aMicrovasculature
■653    ▼aNeutrophils
■653    ▼aTransmigration
■690    ▼a0982
■690    ▼a0541
■690    ▼a0306
■71020▼aYale  University▼bBiomedical  Engineering.
■7730  ▼tDissertations  Abstracts  International▼g86-01B.
■790    ▼a0265
■791    ▼aPh.D.
■792    ▼a2024
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T17160538▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    詳細情報

    • 予約
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • 私のフォルダ
    資料
    登録番号 請求記号 場所 ステータス 情報を貸す
    TQ0033257 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    *ご予約は、借入帳でご利用いただけます。予約をするには、予約ボタンをクリックしてください

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치