본문

서브메뉴

Neutrophilic Immune Response Against Pseudomonas aeruginosa and Staphylococcus aureus Skin Wound Infections.
Neutrophilic Immune Response Against Pseudomonas aeruginosa and Staphylococcus aureus Skin...
Neutrophilic Immune Response Against Pseudomonas aeruginosa and Staphylococcus aureus Skin Wound Infections.

상세정보

Material Type  
 학위논문
 
0017160547
Date and Time of Latest Transaction  
20250211151038
ISBN  
9798382607801
DDC  
610
Author  
Vargas, Alex.
Title/Author  
Neutrophilic Immune Response Against Pseudomonas aeruginosa and Staphylococcus aureus Skin Wound Infections.
Publish Info  
[S.l.] : University of California, Davis., 2024
Publish Info  
Ann Arbor : ProQuest Dissertations & Theses, 2024
Material Info  
130 p.
General Note  
Source: Dissertations Abstracts International, Volume: 85-11, Section: B.
General Note  
Advisor: Simon, Scott.
학위논문주기  
Thesis (Ph.D.)--University of California, Davis, 2024.
Abstracts/Etc  
요약Antibiotic resistant skin infections are an emerging threat to public health. This is driven by the ubiquitous nature of bacteria, their ability to thrive in hostile environments, and their molecular machinery that allows them to quickly develop mechanismsto render antibiotics ineffective. As a result, there is an urgent need to develop therapeutic approaches to treat bacterial infections without relying on antibiotics. Instead, there should be an emphasis on emerging treatments that rapidly and directly enhance immunity against pathogenic infections. Polymorphonuclear leukocytes (PMN) are the most abundant and important effector cells of the innate immune system and should be a primary target for strategies aimed at enhancing innate immunity. Three PMN-centered approaches are presented in this dissertation. The first one revolves around the development and testing of a designed host defense peptide (dHDP) that acts synergistically with PMN to tackle multi-drug resistant S. aureus infection in diabetic mouse wounds. The second approach involves optimizing PMN production and their antibacterial capacity in vitro with the objective of subsequently transferring these cells directly into a site of infection to enhance pathogen clearance. The third strategy aims at investigating signaling pathways that govern PMN functions against S. aureus and P. aeruginosa, with an emphasis on Toll-like receptor signaling and activation of the inflammasome.Two pathogens of clinical interest are Methicillin-Resistant Staphylococcus aureus (MRSA) and Multi-Drug Resistant Pseudomonas aeruginosa (MDRPA). These are common sources of hospital and community-acquired skin infections in immunocompromised patients, including the elderly and people with diabetes. S. aureus is a gram-positive bacterium capable of forming biofilm and secreting virulence factors that can limit the ability of PMN to be recruited into sites of infection. As a result, therapeutic strategies should amplify PMN quantity and antibacterial functions. Studies presented in Chapter 3 demonstrate that the dHDP RP557 can enhance PMN antibacterial functions in vitro, suppress S. aureus proliferation, and enhance wound healing. The studies presented in Chapter 4 demonstrate that PMN production and antibacterial capacity can be enhanced through encapsulation of HSPCs in a 3D bone-marrow-like environment. These studies are inspired by previous publications demonstrating that local granulopoiesis driven by HSPC recruitment into an infected wound is part of the immune response against S. aureus, and that adoptive transfer of PMN generated in vitro from HSPC cultures can enhance bacterial clearance and survival of immunodeficient mice. This response against S. aureus involves TLR2/MyD88 signaling and IL-1β production via activation of the inflammasome. However, the source of IL-1β during this process, the nature of its effects (paracrine or autocrine to HSPC), and whether activation of other TLRs elicits similar IL-1β-dependent local granulopoiesis, remains elusive. Consequently, the studies presented in Chapter 5 demonstrate the early MyD88 activation is required to contain P. aeruginosa in wounded skin. In the absence of MyD88, P. aeruginosa proliferates and disseminates from the infected wound much faster than S. aureus. Compared to wild-type mice, this phenotype correlates with lower levels of IL-1β in wounds of MyD88-/- mice, as well as impaired PMN movement, and their ability to undergo pyroptosis and NETosis. Thus, suggesting that MyD88 is essential for survival against P. aeruginosa by regulating PMN antibacterial functions via IL-1β signaling. Combined, these studies point to the development of antibacterial strategies that target these key adaptors to amplify the immune response to infection.
Subject Added Entry-Topical Term  
Bioengineering.
Subject Added Entry-Topical Term  
Immunology.
Subject Added Entry-Topical Term  
Biomedical engineering.
Index Term-Uncontrolled  
Myeloid Differentiation Primary Response 88
Index Term-Uncontrolled  
NETosis
Index Term-Uncontrolled  
Polymorphonuclear leukocytes
Index Term-Uncontrolled  
Pseudomonas aeruginosa
Index Term-Uncontrolled  
Pyroptosis
Index Term-Uncontrolled  
Staphylococcus aureus
Added Entry-Corporate Name  
University of California, Davis Biomedical Engineering
Host Item Entry  
Dissertations Abstracts International. 85-11B.
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:657036

MARC

 008250224s2024        us  ||||||||||||||c||eng  d
■001000017160547
■00520250211151038
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798382607801
■035    ▼a(MiAaPQ)AAI31139557
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a610
■1001  ▼aVargas,  Alex.
■24510▼aNeutrophilic  Immune  Response  Against  Pseudomonas  aeruginosa  and  Staphylococcus  aureus  Skin  Wound  Infections.
■260    ▼a[S.l.]▼bUniversity  of  California,  Davis.  ▼c2024
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2024
■300    ▼a130  p.
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  85-11,  Section:  B.
■500    ▼aAdvisor:  Simon,  Scott.
■5021  ▼aThesis  (Ph.D.)--University  of  California,  Davis,  2024.
■520    ▼aAntibiotic  resistant  skin  infections  are  an  emerging  threat  to  public  health.  This  is  driven  by  the  ubiquitous  nature  of  bacteria,  their  ability  to  thrive  in  hostile  environments,  and  their  molecular  machinery  that  allows  them  to  quickly  develop  mechanismsto  render  antibiotics  ineffective.  As  a  result,  there  is  an  urgent  need  to  develop  therapeutic  approaches  to  treat  bacterial  infections  without  relying  on  antibiotics.  Instead,  there  should  be  an  emphasis  on  emerging  treatments  that  rapidly  and  directly  enhance  immunity  against  pathogenic  infections.  Polymorphonuclear  leukocytes  (PMN)  are  the  most  abundant  and  important  effector  cells  of  the  innate  immune  system  and  should  be  a  primary  target  for  strategies  aimed  at  enhancing  innate  immunity.  Three  PMN-centered  approaches  are  presented  in  this  dissertation.  The  first  one  revolves  around  the  development  and  testing  of  a  designed  host  defense  peptide  (dHDP)  that  acts  synergistically  with  PMN  to  tackle  multi-drug  resistant  S.  aureus  infection  in  diabetic  mouse  wounds.  The  second  approach  involves  optimizing  PMN  production  and  their  antibacterial  capacity  in  vitro  with  the  objective  of  subsequently  transferring  these  cells  directly  into  a  site  of  infection  to  enhance  pathogen  clearance.  The  third  strategy  aims  at  investigating  signaling  pathways  that  govern  PMN  functions  against  S.  aureus  and  P.  aeruginosa,  with  an  emphasis  on  Toll-like  receptor  signaling  and  activation  of  the  inflammasome.Two  pathogens  of  clinical  interest  are  Methicillin-Resistant  Staphylococcus  aureus  (MRSA)  and  Multi-Drug  Resistant  Pseudomonas  aeruginosa  (MDRPA).  These  are  common  sources  of  hospital  and  community-acquired  skin  infections  in  immunocompromised  patients,  including  the  elderly  and  people  with  diabetes.  S.  aureus  is  a  gram-positive  bacterium  capable  of  forming  biofilm  and  secreting  virulence  factors  that  can  limit  the  ability  of  PMN  to  be  recruited  into  sites  of  infection.  As  a  result,  therapeutic  strategies  should  amplify  PMN  quantity  and  antibacterial  functions.  Studies  presented  in  Chapter  3  demonstrate  that  the  dHDP  RP557  can  enhance  PMN  antibacterial  functions  in  vitro,  suppress  S.  aureus  proliferation,  and  enhance  wound  healing.  The  studies  presented  in  Chapter  4  demonstrate  that  PMN  production  and  antibacterial  capacity  can  be  enhanced  through  encapsulation  of  HSPCs  in  a  3D  bone-marrow-like  environment.  These  studies  are  inspired  by  previous  publications  demonstrating  that  local  granulopoiesis  driven  by  HSPC  recruitment  into  an  infected  wound  is  part  of  the  immune  response  against  S.  aureus,  and  that  adoptive  transfer  of  PMN  generated  in  vitro  from  HSPC  cultures  can  enhance  bacterial  clearance  and  survival  of  immunodeficient  mice.  This  response  against  S.  aureus  involves  TLR2/MyD88  signaling  and  IL-1β  production  via  activation  of  the  inflammasome.  However,  the  source  of  IL-1β  during  this  process,  the  nature  of  its  effects  (paracrine  or  autocrine  to  HSPC),  and  whether  activation  of  other  TLRs  elicits  similar  IL-1β-dependent  local  granulopoiesis,  remains  elusive.  Consequently,  the  studies  presented  in  Chapter  5  demonstrate  the  early  MyD88  activation  is  required  to  contain  P.  aeruginosa  in  wounded  skin.  In  the  absence  of  MyD88,  P.  aeruginosa  proliferates  and  disseminates  from  the  infected  wound  much  faster  than  S.  aureus.  Compared  to  wild-type  mice,  this  phenotype  correlates  with  lower  levels  of  IL-1β  in  wounds  of  MyD88-/-  mice,  as  well  as  impaired  PMN  movement,  and  their  ability  to  undergo  pyroptosis  and  NETosis.  Thus,  suggesting  that  MyD88  is  essential  for  survival  against  P.  aeruginosa  by  regulating  PMN  antibacterial  functions  via  IL-1β  signaling.  Combined,  these  studies  point  to  the  development  of  antibacterial  strategies  that  target  these  key  adaptors  to  amplify  the  immune  response  to  infection.
■590    ▼aSchool  code:  0029.
■650  4▼aBioengineering.
■650  4▼aImmunology.
■650  4▼aBiomedical  engineering.
■653    ▼aMyeloid  Differentiation  Primary  Response  88
■653    ▼aNETosis
■653    ▼aPolymorphonuclear  leukocytes
■653    ▼aPseudomonas  aeruginosa
■653    ▼aPyroptosis
■653    ▼aStaphylococcus  aureus
■690    ▼a0202
■690    ▼a0982
■690    ▼a0541
■71020▼aUniversity  of  California,  Davis▼bBiomedical  Engineering.
■7730  ▼tDissertations  Abstracts  International▼g85-11B.
■790    ▼a0029
■791    ▼aPh.D.
■792    ▼a2024
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T17160547▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    Detail Info.

    • Reservation
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • My Folder
    Material
    Reg No. Call No. Location Status Lend Info
    TQ0033254 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * Reservations are available in the borrowing book. To make reservations, Please click the reservation button

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치