본문

서브메뉴

Machine Learning Meets Analog Circuit Design: Intelligent Automation of IC Design.
Machine Learning Meets Analog Circuit Design: Intelligent Automation of IC Design.

상세정보

자료유형  
 학위논문
Control Number  
0017164482
International Standard Book Number  
9798384044420
Dewey Decimal Classification Number  
621.3
Main Entry-Personal Name  
Fayazi, Morteza.
Publication, Distribution, etc. (Imprint  
[S.l.] : University of Michigan., 2024
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2024
Physical Description  
180 p.
General Note  
Source: Dissertations Abstracts International, Volume: 86-03, Section: B.
General Note  
Advisor: Afshari, Ehsan;Dreslinski, Ronald G.
Dissertation Note  
Thesis (Ph.D.)--University of Michigan, 2024.
Summary, Etc.  
요약Custom Analog and Mixed-Signal (AMS) circuits have broad applications in wireless communication, biosensors, etc. Traditionally, the design parameters of AMS circuits e.g. transistor size and biasing are calculated manually by designers. However, the complexity of physical models and severe process variations with downscaling of technology node for large AMS circuits leads to inefficiency and hardship of robust manual design especially in corner extraction. Moreover, generating post-layout simulation is very time-consuming. Therefore because of the growing demand of high performance, low power and time-to-market Integrated Circuits (ICs), there is a crucial need of autonomous AMS circuit design. This would catch up with the digital circuit designs, which have been automated for a long time.Automating AMS circuit design procedure has always been challenging as it tightly ties to human expertise and intuition to make a relationship between various parameters and performances. Given the main circuit topology, in order to satisfy the desired specifications, the circuit parameters should be chosen optimally. So, this circuit optimization problem, i.e. determining the circuit parameter values to meet the required specifications, can be solved using mathematical optimization methods. As a result, a Computer-Aided Design (CAD) tool would be able to automate this circuit sizing optimization procedure leveraging techniques such as gradient-based, convex optimization, and evolutionary algorithms.Recently, Machine Learning (ML) has shown promising results in different areas from image categorization to speech recognition. ML algorithms are suitable for yield estimation and making high-order models which can be used instead of complex physical models with a less computational cost for AMS circuit design. Furthermore, ML can be leveraged to replace lengthy and costly measurements by a set of simpler measurements to ease the AMS production test. The main ML challenge to have an accurate model is providing robust and enough simulation data for training sets due to essential high-dimensional variation space to model the process variation and costly simulation in a growing AMS system size. Also, providing Intellectual Properties (IPs) from different IC companies is another barrier of dataset collection. Automatically optimized AMS circuit sizing is another application of ML. In such approaches, Electronic Design Automation (EDA) tools try combinations of design variables to find a sizing that meets the desired specifications instead of the traditional circuit sizing approach i.e. going from the target specification to the corresponding device sizes. After automation of each AMS block sizing, automation of whole System on Chip (SoC) is doable with integrating these pieces.This thesis proposes a series of works that uncover unique methods for automating the design of AMS circuits. First, we propose a fully automated Single-Board Computer (SBC) generator tool, FASCINET. FASCINET uses a Neural Network (NN) model to design customized peripheral circuits for SBCs. The tool creates a large Commercial Off-the-Shelf Database (COTS DB) of existing components, efficiently searches through them, and selects optimal components for both main and peripheral components based on the user's requirements. Creating such a broad COTS DB requires processing abundant datasheets. In order to automate this process, we describe a novel NN-based approach for automatically categorizing datasheets and propose an extraction technique for parsing relevant functional information. Our evaluations show that FASCINET is able to design SBCs that are identical to the manually-designed ones except for minor differences. Second, we go over our table extraction tool, Tablext, which can be used on datasheets or any other documents.Third, we present AnGeL, a fully-automated analog circuit generator framework. AnGeL performs all the schematic circuit design steps from deciding the circuit topology to determining the circuit parameters i.e. sizing. Furthermore, we present a method to reduce the size of AnGeL's database. For this purpose, we use NNs to determine the behavior of complicated circuit topologies by combining the more simple ones. By generating such unlabeled data, the time for providing the training set is significantly reduced compared to the conventional approaches. Our results show that for multiple circuit topologies, in comparison to the state-of-the-art works while maintaining the same accuracy, the required labeled data is reduced by 4.7x - 1090x. Also, the runtime of AnGeL is 2.9x - 75x faster. Fourth, we propose FuNToM, a functional modeling method for Radio Frequency (RF) circuits. FuNToM leverages the two-port analysis method along with NNs for modeling multiple topologies using a single main dataset and multiple small datasets. This significantly reduces the required number of training data. Our results show that for multiple RF circuits, in comparison to the state-of-the-art works while maintaining the same accuracy, the required training data is reduced by 2.8x - 10.9x. In addition, FuNToM needs 176.8x - 188.6x less time for collecting the training set in post-layout modeling.Finally, we conclude our work and give meaningful insights about the current challenges and open issues.
Subject Added Entry-Topical Term  
Computer engineering.
Subject Added Entry-Topical Term  
Computer science.
Subject Added Entry-Topical Term  
Electrical engineering.
Index Term-Uncontrolled  
Electronic Design Automation
Index Term-Uncontrolled  
Analog circuit
Index Term-Uncontrolled  
Physical models
Index Term-Uncontrolled  
Machine Learning
Added Entry-Corporate Name  
University of Michigan Electrical and Computer Engineering
Host Item Entry  
Dissertations Abstracts International. 86-03B.
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:656948

MARC

 008250224s2024        us  ||||||||||||||c||eng  d
■001000017164482
■00520250211153008
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798384044420
■035    ▼a(MiAaPQ)AAI31631416
■035    ▼a(MiAaPQ)umichrackham005653
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a621.3
■1001  ▼aFayazi,  Morteza.
■24510▼aMachine  Learning  Meets  Analog  Circuit  Design:  Intelligent  Automation  of  IC  Design.
■260    ▼a[S.l.]▼bUniversity  of  Michigan.  ▼c2024
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2024
■300    ▼a180  p.
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  86-03,  Section:  B.
■500    ▼aAdvisor:  Afshari,  Ehsan;Dreslinski,  Ronald  G.
■5021  ▼aThesis  (Ph.D.)--University  of  Michigan,  2024.
■520    ▼aCustom  Analog  and  Mixed-Signal  (AMS)  circuits  have  broad  applications  in  wireless  communication,  biosensors,  etc.  Traditionally,  the  design  parameters  of  AMS  circuits  e.g.  transistor  size  and  biasing  are  calculated  manually  by  designers.  However,  the  complexity  of  physical  models  and  severe  process  variations  with  downscaling  of  technology  node  for  large  AMS  circuits  leads  to  inefficiency  and  hardship  of  robust  manual  design  especially  in  corner  extraction.  Moreover,  generating  post-layout  simulation  is  very  time-consuming.  Therefore  because  of  the  growing  demand  of  high  performance,  low  power  and  time-to-market  Integrated  Circuits  (ICs),  there  is  a  crucial  need  of  autonomous  AMS  circuit  design.  This  would  catch  up  with  the  digital  circuit  designs,  which  have  been  automated  for  a  long  time.Automating  AMS  circuit  design  procedure  has  always  been  challenging  as  it  tightly  ties  to  human  expertise  and  intuition  to  make  a  relationship  between  various  parameters  and  performances.  Given  the  main  circuit  topology,  in  order  to  satisfy  the  desired  specifications,  the  circuit  parameters  should  be  chosen  optimally.  So,  this  circuit  optimization  problem,  i.e.  determining  the  circuit  parameter  values  to  meet  the  required  specifications,  can  be  solved  using  mathematical  optimization  methods.  As  a  result,  a  Computer-Aided  Design  (CAD)  tool  would  be  able  to  automate  this  circuit  sizing  optimization  procedure  leveraging  techniques  such  as  gradient-based,  convex  optimization,  and  evolutionary  algorithms.Recently,  Machine  Learning  (ML)  has  shown  promising  results  in  different  areas  from  image  categorization  to  speech  recognition.  ML  algorithms  are  suitable  for  yield  estimation  and  making  high-order  models  which  can  be  used  instead  of  complex  physical models  with  a  less  computational  cost  for  AMS  circuit  design.  Furthermore,  ML  can  be  leveraged  to  replace  lengthy  and  costly  measurements  by  a  set  of  simpler  measurements  to  ease  the  AMS  production  test.  The  main  ML  challenge  to  have  an  accurate  model  is  providing  robust  and  enough  simulation  data  for  training  sets  due  to  essential  high-dimensional  variation  space  to  model  the  process  variation  and  costly  simulation  in  a  growing  AMS  system  size.  Also,  providing  Intellectual  Properties  (IPs)  from  different  IC  companies  is  another  barrier  of  dataset  collection.  Automatically  optimized  AMS  circuit  sizing  is  another  application  of  ML.  In  such  approaches,  Electronic  Design  Automation  (EDA)  tools  try  combinations  of  design  variables  to  find  a  sizing  that  meets  the  desired  specifications  instead  of  the  traditional  circuit  sizing  approach  i.e.  going  from  the  target  specification  to  the  corresponding  device  sizes.  After  automation  of  each  AMS  block  sizing,  automation  of  whole  System  on  Chip  (SoC)  is  doable  with  integrating  these  pieces.This  thesis  proposes  a  series  of  works  that  uncover  unique  methods  for  automating  the  design  of  AMS  circuits.  First,  we  propose  a  fully  automated  Single-Board  Computer  (SBC)  generator  tool,  FASCINET.  FASCINET  uses  a  Neural  Network  (NN)  model  to  design  customized  peripheral  circuits  for  SBCs.  The  tool  creates  a  large  Commercial  Off-the-Shelf  Database  (COTS  DB)  of  existing  components,  efficiently  searches  through  them,  and  selects  optimal  components  for  both  main  and  peripheral  components  based  on  the  user's  requirements.  Creating  such  a  broad  COTS  DB  requires  processing  abundant  datasheets.  In  order  to  automate  this  process,  we  describe  a  novel  NN-based  approach  for  automatically  categorizing  datasheets  and  propose  an  extraction  technique  for  parsing  relevant  functional  information.  Our  evaluations  show  that  FASCINET  is  able  to  design  SBCs  that  are  identical  to  the  manually-designed  ones  except  for  minor  differences.  Second,  we  go  over  our  table  extraction  tool,  Tablext,  which  can  be  used  on  datasheets  or  any  other  documents.Third,  we  present  AnGeL,  a  fully-automated  analog  circuit  generator  framework. AnGeL  performs  all  the  schematic  circuit  design  steps  from  deciding  the  circuit  topology  to  determining  the  circuit  parameters  i.e.  sizing.  Furthermore,  we  present  a  method  to  reduce  the  size  of  AnGeL's  database.  For  this  purpose,  we  use  NNs  to  determine  the  behavior  of  complicated  circuit  topologies  by  combining  the  more  simple  ones.  By  generating  such  unlabeled  data,  the  time  for  providing  the  training  set  is  significantly  reduced  compared  to  the  conventional  approaches.  Our  results  show  that  for  multiple  circuit  topologies,  in  comparison  to  the  state-of-the-art  works  while  maintaining  the  same  accuracy,  the  required  labeled  data  is  reduced  by  4.7x  -  1090x.  Also,  the  runtime  of  AnGeL  is  2.9x  -  75x  faster.  Fourth,  we  propose  FuNToM,  a  functional  modeling  method  for  Radio  Frequency  (RF)  circuits.  FuNToM  leverages  the  two-port  analysis  method  along  with  NNs  for  modeling  multiple  topologies  using  a  single  main  dataset  and  multiple  small  datasets.  This  significantly  reduces  the  required  number  of  training  data.  Our  results  show  that  for  multiple  RF  circuits,  in  comparison  to  the  state-of-the-art  works  while  maintaining  the  same  accuracy,  the  required  training  data  is  reduced  by  2.8x  -  10.9x.  In  addition,  FuNToM  needs  176.8x  -  188.6x  less  time  for  collecting  the  training  set  in  post-layout  modeling.Finally,  we  conclude  our  work  and  give  meaningful  insights  about  the  current  challenges  and  open  issues.
■590    ▼aSchool  code:  0127.
■650  4▼aComputer  engineering.
■650  4▼aComputer  science.
■650  4▼aElectrical  engineering.
■653    ▼aElectronic  Design  Automation
■653    ▼aAnalog  circuit
■653    ▼aPhysical  models
■653    ▼aMachine  Learning
■690    ▼a0544
■690    ▼a0984
■690    ▼a0464
■690    ▼a0800
■71020▼aUniversity  of  Michigan▼bElectrical  and  Computer  Engineering.
■7730  ▼tDissertations  Abstracts  International▼g86-03B.
■790    ▼a0127
■791    ▼aPh.D.
■792    ▼a2024
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T17164482▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    Buch Status

    • Reservierung
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • Meine Mappe
    Sammlungen
    Registrierungsnummer callnumber Standort Verkehr Status Verkehr Info
    TQ0033166 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * Kredite nur für Ihre Daten gebucht werden. Wenn Sie buchen möchten Reservierungen, klicken Sie auf den Button.

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치