본문

서브메뉴

Quantum Phases in Fermi Hubbard Systems With Tunable Frustration.
Quantum Phases in Fermi Hubbard Systems With Tunable Frustration.

상세정보

자료유형  
 학위논문
Control Number  
0017161735
International Standard Book Number  
9798382776446
Dewey Decimal Classification Number  
530
Main Entry-Personal Name  
Xu, Muqing.
Publication, Distribution, etc. (Imprint  
[S.l.] : Harvard University., 2024
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2024
Physical Description  
217 p.
General Note  
Source: Dissertations Abstracts International, Volume: 85-12, Section: B.
General Note  
Advisor: Greiner, Markus.
Dissertation Note  
Thesis (Ph.D.)--Harvard University, 2024.
Summary, Etc.  
요약Analog quantum simulation provides a unique toolkit to investigate quantum many-body problems of whose solutions may be incredibly challenging. In particular, using ultracold fermionic atoms in optical lattices it realizes the Fermi Hubbard model, which is a fundamental model in condensed matter physics exhibiting properties relevant to many intriguing strongly-correlated systems. However, most quantum simulators of the Hubbard model have so far restricted to the square geometries. In addition, access to low temperatures where the exotic quantum phases are predicted to develop has still remained elusive.In this thesis, we engineer a novel optical lattice with dynamically tunable geometries and significantly reduced technical noises. We extend for the first time the study of quantum magnetism into the exotic phases in a Fermi Hubbard system with tunable geometric frustration. As we continuously tune our system from a square to a triangular lattice geometry, we observe a transition from a Neel antiferromagnet to a 120◦ spin spiral state. We then study, again for the first time, how doping affects a frustrated quantum magnet. To our surprise, we found an emergent ferromagnetic state with strong particle doping, which is absent on the hole-doped side and is in stark contrast with the particle-hole symmetric doping dependence in a square lattice. To shed light on the role of itinerant dopants in the emergence of these new magnetic properties, we furthermore leverage the unique single-particle resolution capabilities of our platform to probe higher-order density and spin correlations. These measurements hint at a new type of magnetism induced by kinetic frustration, which manifests as local antiferromagnetic correlations around hole dopants and and ferromagnetic correlations around particle dopants. Unlike magnetism induced by exchange or super exchange interactions, the energy associated with this mechanism is the kinetic energy, closely related to the famous rigorous results by Nagaoka.Furthermore, the dynamical tunability of the lattice allows adibatic engineering of quantum states in optical lattices. We discuss the preliminery efforts to prepare strongly-correlated states with significantly reduced temperatures, which may pave the way towards low temperature states in the Hubbard model.
Subject Added Entry-Topical Term  
Physics.
Subject Added Entry-Topical Term  
Quantum physics.
Subject Added Entry-Topical Term  
Particle physics.
Index Term-Uncontrolled  
Geometric frustration
Index Term-Uncontrolled  
Hubbard model
Index Term-Uncontrolled  
Kinetic magnetism
Index Term-Uncontrolled  
Nagaoka magnetism
Index Term-Uncontrolled  
Optical lattice
Index Term-Uncontrolled  
Quantum simulation
Added Entry-Corporate Name  
Harvard University Physics
Host Item Entry  
Dissertations Abstracts International. 85-12B.
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:656888

MARC

 008250224s2024        us  ||||||||||||||c||eng  d
■001000017161735
■00520250211151437
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798382776446
■035    ▼a(MiAaPQ)AAI31295779
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a530
■1001  ▼aXu,  Muqing.▼0(orcid)0000-0003-2384-0208
■24510▼aQuantum  Phases  in  Fermi  Hubbard  Systems  With  Tunable  Frustration.
■260    ▼a[S.l.]▼bHarvard  University.  ▼c2024
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2024
■300    ▼a217  p.
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  85-12,  Section:  B.
■500    ▼aAdvisor:  Greiner,  Markus.
■5021  ▼aThesis  (Ph.D.)--Harvard  University,  2024.
■520    ▼aAnalog  quantum  simulation  provides  a  unique  toolkit  to  investigate  quantum  many-body  problems  of  whose  solutions  may  be  incredibly  challenging.  In  particular,  using  ultracold  fermionic  atoms  in  optical  lattices  it  realizes  the  Fermi  Hubbard  model,  which  is  a  fundamental  model  in  condensed  matter  physics  exhibiting  properties  relevant  to  many  intriguing  strongly-correlated  systems.  However,  most  quantum  simulators  of  the  Hubbard  model  have  so  far  restricted  to  the  square  geometries.  In  addition,  access  to  low  temperatures  where  the  exotic  quantum  phases  are  predicted  to  develop  has  still  remained  elusive.In  this  thesis,  we  engineer  a  novel  optical  lattice  with  dynamically  tunable  geometries  and  significantly  reduced  technical  noises.  We  extend  for  the  first  time  the  study  of  quantum  magnetism  into  the  exotic  phases  in  a  Fermi  Hubbard  system  with  tunable  geometric  frustration.  As  we  continuously  tune  our  system  from  a  square  to  a  triangular  lattice  geometry,  we  observe  a  transition  from  a  Neel  antiferromagnet  to  a  120◦  spin  spiral  state.  We  then  study,  again  for  the  first  time,  how  doping  affects  a  frustrated  quantum  magnet.  To  our  surprise,  we  found  an  emergent  ferromagnetic  state  with  strong  particle  doping,  which  is  absent  on  the  hole-doped  side  and  is  in  stark  contrast  with  the  particle-hole  symmetric  doping  dependence  in  a  square  lattice.  To  shed  light  on  the  role  of  itinerant  dopants  in  the  emergence  of  these  new  magnetic  properties,  we  furthermore  leverage  the  unique  single-particle  resolution  capabilities  of  our  platform  to  probe  higher-order  density  and  spin  correlations.  These  measurements  hint  at  a  new  type  of  magnetism  induced  by  kinetic  frustration,  which  manifests  as  local  antiferromagnetic  correlations  around  hole  dopants  and  and  ferromagnetic  correlations  around  particle  dopants.  Unlike  magnetism  induced  by  exchange  or  super  exchange  interactions,  the  energy  associated  with  this  mechanism  is  the  kinetic  energy,  closely  related  to  the  famous  rigorous  results  by  Nagaoka.Furthermore,  the  dynamical  tunability  of  the  lattice  allows  adibatic  engineering  of  quantum  states  in  optical  lattices.  We  discuss  the  preliminery  efforts  to  prepare  strongly-correlated  states  with  significantly  reduced  temperatures,  which  may  pave  the  way  towards  low  temperature  states  in  the  Hubbard  model.
■590    ▼aSchool  code:  0084.
■650  4▼aPhysics.
■650  4▼aQuantum  physics.
■650  4▼aParticle  physics.
■653    ▼aGeometric  frustration
■653    ▼aHubbard  model
■653    ▼aKinetic  magnetism
■653    ▼aNagaoka  magnetism
■653    ▼aOptical  lattice
■653    ▼aQuantum  simulation
■690    ▼a0605
■690    ▼a0599
■690    ▼a0798
■71020▼aHarvard  University▼bPhysics.
■7730  ▼tDissertations  Abstracts  International▼g85-12B.
■790    ▼a0084
■791    ▼aPh.D.
■792    ▼a2024
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T17161735▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    Info Détail de la recherche.

    • Réservation
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • My Folder
    Matériel
    Reg No. Call No. emplacement Status Lend Info
    TQ0033106 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * Les réservations sont disponibles dans le livre d'emprunt. Pour faire des réservations, S'il vous plaît cliquer sur le bouton de réservation

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치