본문

서브메뉴

Developing Efficient and Accurate Machine-Learning Methods for Understanding and Predicting Molecular and Material Properties.
Developing Efficient and Accurate Machine-Learning Methods for Understanding and Predicting Molecular and Material Properties.

상세정보

자료유형  
 학위논문
Control Number  
0017163957
International Standard Book Number  
9798384098614
Dewey Decimal Classification Number  
540
Main Entry-Personal Name  
Kirkvold, Clara.
Publication, Distribution, etc. (Imprint  
[S.l.] : University of Minnesota., 2024
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2024
Physical Description  
136 p.
General Note  
Source: Dissertations Abstracts International, Volume: 86-03, Section: B.
General Note  
Advisor: Goodpaster, Jason D.
Dissertation Note  
Thesis (Ph.D.)--University of Minnesota, 2024.
Summary, Etc.  
요약Machine learning has been widely applied to accelerate molecular simulations and predict molecular/material properties. Machine learning accomplishes this by leveraging the patterns and relationships between a system's features and the desired property. To further the application of machine learning in chemistry, developing new algorithms and featurization techniques is vital. This dissertation presents innovative machine-learning frameworks and featurization techniques to predict a variety of molecular/material properties and accelerate molecular simulations. In Chapter 2, we investigate training neural networks on features built from information obtained from cheap computational electronic structure (e.g., Hartree-Fock) calculations to predict more expensive ab initio calculations. Chapter 3 presents the development of a machine learning framework that combines neural networks with the many-body expanded Full Configuration Interaction method. In Chapter 4, we apply featurization techniques inspired by natural language processing to leverage nominal categorical data for predicting adsorption energies on metallic surfaces at the Density Functional Theory level. Finally, Chapter 5 introduces a novel hybrid Neural Network Potential/Molecular Mechanics algorithm. Overall, this work provides significant insight into developing more efficient and accurate machine-learning methods for understanding and predicting molecular and material properties.
Subject Added Entry-Topical Term  
Chemistry.
Subject Added Entry-Topical Term  
Physical chemistry.
Subject Added Entry-Topical Term  
Computational chemistry.
Index Term-Uncontrolled  
Catalysis
Index Term-Uncontrolled  
Electronic structure
Index Term-Uncontrolled  
Machine learning
Index Term-Uncontrolled  
Embedding networks
Index Term-Uncontrolled  
Natural language processing
Added Entry-Corporate Name  
University of Minnesota Chemistry
Host Item Entry  
Dissertations Abstracts International. 86-03B.
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:656853

MARC

 008250224s2024        us  ||||||||||||||c||eng  d
■001000017163957
■00520250211152814
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798384098614
■035    ▼a(MiAaPQ)AAI31558338
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a540
■1001  ▼aKirkvold,  Clara.
■24510▼aDeveloping  Efficient  and  Accurate  Machine-Learning  Methods  for  Understanding  and  Predicting  Molecular  and  Material  Properties.
■260    ▼a[S.l.]▼bUniversity  of  Minnesota.  ▼c2024
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2024
■300    ▼a136  p.
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  86-03,  Section:  B.
■500    ▼aAdvisor:  Goodpaster,  Jason  D.
■5021  ▼aThesis  (Ph.D.)--University  of  Minnesota,  2024.
■520    ▼aMachine  learning  has  been  widely  applied  to  accelerate  molecular  simulations  and  predict  molecular/material  properties.  Machine  learning  accomplishes  this  by  leveraging  the  patterns  and  relationships  between  a  system's  features  and  the  desired  property.  To  further  the  application  of  machine  learning  in  chemistry,  developing  new  algorithms  and  featurization  techniques  is  vital.  This  dissertation  presents  innovative  machine-learning  frameworks  and  featurization  techniques  to  predict  a  variety  of  molecular/material  properties  and  accelerate  molecular  simulations.  In  Chapter  2,  we  investigate  training  neural  networks  on  features  built  from  information  obtained  from  cheap  computational  electronic  structure  (e.g.,  Hartree-Fock)  calculations  to  predict  more  expensive  ab  initio  calculations.  Chapter  3  presents  the  development  of  a  machine  learning  framework  that  combines  neural  networks  with  the  many-body  expanded  Full  Configuration  Interaction  method.  In  Chapter  4,  we  apply  featurization  techniques  inspired  by  natural  language  processing  to  leverage  nominal  categorical  data  for  predicting  adsorption  energies  on  metallic  surfaces  at  the  Density  Functional  Theory  level.  Finally,  Chapter  5  introduces  a  novel  hybrid  Neural  Network  Potential/Molecular  Mechanics  algorithm.  Overall,  this  work  provides  significant  insight  into  developing  more  efficient  and  accurate  machine-learning  methods  for  understanding  and  predicting  molecular  and  material  properties.
■590    ▼aSchool  code:  0130.
■650  4▼aChemistry.
■650  4▼aPhysical  chemistry.
■650  4▼aComputational  chemistry.
■653    ▼aCatalysis
■653    ▼aElectronic  structure
■653    ▼aMachine  learning
■653    ▼aEmbedding  networks
■653    ▼aNatural  language  processing
■690    ▼a0485
■690    ▼a0800
■690    ▼a0219
■690    ▼a0494
■71020▼aUniversity  of  Minnesota▼bChemistry.
■7730  ▼tDissertations  Abstracts  International▼g86-03B.
■790    ▼a0130
■791    ▼aPh.D.
■792    ▼a2024
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T17163957▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    Buch Status

    • Reservierung
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • Meine Mappe
    Sammlungen
    Registrierungsnummer callnumber Standort Verkehr Status Verkehr Info
    TQ0032971 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * Kredite nur für Ihre Daten gebucht werden. Wenn Sie buchen möchten Reservierungen, klicken Sie auf den Button.

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치