본문

서브메뉴

Modeling the Three-Dimensional Atmospheric Structure and Emission Spectra of Hot Gaseous Planets.
Modeling the Three-Dimensional Atmospheric Structure and Emission Spectra of Hot Gaseous Planets.

상세정보

자료유형  
 학위논문
Control Number  
0017164544
International Standard Book Number  
9798384045748
Dewey Decimal Classification Number  
523
Main Entry-Personal Name  
Malsky, Isaac.
Publication, Distribution, etc. (Imprint  
[S.l.] : University of Michigan., 2024
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2024
Physical Description  
241 p.
General Note  
Source: Dissertations Abstracts International, Volume: 86-03, Section: B.
General Note  
Advisor: Rauscher, Emily.
Dissertation Note  
Thesis (Ph.D.)--University of Michigan, 2024.
Summary, Etc.  
요약Although thousands of exoplanets have been discovered, a relatively rare class of planets known as hot Jupiters has historically been critical to the advancement of the field. Hot Jupiters---massive gaseous planets with orbital semi-major axes less than ~0.05 au---are among the brightest and best candidates for atmospheric characterization. They are expected to be tidally locked, with constant day sides and constant night sides. Extreme temperature gradients drive supersonic winds, chemically diverse clouds form and dissipate in homogeneously, and hazes may blanket their atmospheres.In tandem with observations, simulations are critical to interpreting measurements, breaking degeneracies between different atmospheric physical and chemical structures, and showing how physical processes influence atmospheric circulation. The most comprehensive physics-driven models simulate full atmospheres and self-consistently show the resulting 3D chemical and physical structures. These models, known as General Circulation Models (GCMs), simulate radiative transfer, fluid dynamics, and other phenomena in planetary atmospheres.This thesis focuses on using numerical methods to characterize exoplanet atmospheres and expanding the physics within a GCM. Background to the field and an overview of GCMs is given in Chapter 1. In Chapter 2, I characterize how clouds and non-edge-on inclinations manifest in hot Jupiter emission spectra. In Chapter 3, I show that multiwavelength radiative transfer and clouds increase day-night temperature differences in hot Jupiters and result in non-isothermal upper atmospheres. In Chapter 4, I quantify how clouds and multiwavelength radiative transfer affect emission spectra and benchmark these differences against a new analysis of Spitzer phase curves of two canonical hot Jupiters. In Chapter 5, I model a warm Neptune with clouds and hazes to characterize the first ever JWST thermal phase curve. Finally, in Chapter 6 I conclude with a discussion of the future direction of the field of exoplanet atmospheric modeling. Additionally, I include two supplementary works that were completed concurrently with the above research on the helium enhancement of sub-Neptune mass atmospheres through fractionated mass loss.
Subject Added Entry-Topical Term  
Astrophysics.
Subject Added Entry-Topical Term  
Astronomy.
Subject Added Entry-Topical Term  
Planetology.
Index Term-Uncontrolled  
Exoplanet atmospheres
Index Term-Uncontrolled  
General Circulation Models
Index Term-Uncontrolled  
Emission spectra
Index Term-Uncontrolled  
Jupiter
Index Term-Uncontrolled  
Neptune
Added Entry-Corporate Name  
University of Michigan Astronomy and Astrophysics
Host Item Entry  
Dissertations Abstracts International. 86-03B.
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:656812

MARC

 008250224s2024        us  ||||||||||||||c||eng  d
■001000017164544
■00520250211153015
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798384045748
■035    ▼a(MiAaPQ)AAI31631512
■035    ▼a(MiAaPQ)umichrackham005683
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a523
■1001  ▼aMalsky,  Isaac.
■24510▼aModeling  the  Three-Dimensional  Atmospheric  Structure  and  Emission  Spectra  of  Hot  Gaseous  Planets.
■260    ▼a[S.l.]▼bUniversity  of  Michigan.  ▼c2024
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2024
■300    ▼a241  p.
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  86-03,  Section:  B.
■500    ▼aAdvisor:  Rauscher,  Emily.
■5021  ▼aThesis  (Ph.D.)--University  of  Michigan,  2024.
■520    ▼aAlthough  thousands  of  exoplanets  have  been  discovered,  a  relatively  rare  class  of  planets  known  as  hot  Jupiters  has  historically  been  critical  to  the  advancement  of  the  field.  Hot  Jupiters---massive  gaseous  planets  with  orbital  semi-major  axes  less  than  ~0.05  au---are  among  the  brightest  and  best  candidates  for  atmospheric  characterization.  They  are  expected  to  be  tidally  locked,  with  constant  day  sides  and  constant  night  sides.  Extreme  temperature  gradients  drive  supersonic  winds,  chemically  diverse  clouds  form  and  dissipate  in  homogeneously,  and  hazes  may  blanket  their  atmospheres.In  tandem  with  observations,  simulations  are  critical  to  interpreting  measurements,  breaking  degeneracies  between  different  atmospheric  physical  and  chemical  structures,  and  showing  how  physical  processes  influence  atmospheric  circulation.  The  most  comprehensive  physics-driven  models  simulate  full  atmospheres  and  self-consistently  show  the  resulting  3D  chemical  and  physical  structures.  These  models,  known  as  General  Circulation  Models  (GCMs),  simulate  radiative  transfer,  fluid  dynamics,  and  other  phenomena  in  planetary  atmospheres.This  thesis  focuses  on  using  numerical  methods  to  characterize  exoplanet  atmospheres  and  expanding  the  physics  within  a  GCM.  Background  to  the  field  and  an  overview  of  GCMs  is  given  in  Chapter  1.  In  Chapter  2,  I  characterize  how  clouds  and  non-edge-on  inclinations  manifest  in  hot  Jupiter  emission  spectra.  In  Chapter  3,  I  show  that  multiwavelength  radiative  transfer  and  clouds  increase  day-night  temperature  differences  in  hot  Jupiters  and  result  in  non-isothermal  upper  atmospheres.  In  Chapter  4,  I  quantify  how  clouds  and  multiwavelength  radiative  transfer  affect  emission  spectra  and  benchmark  these  differences  against  a  new  analysis  of  Spitzer  phase  curves  of  two  canonical  hot  Jupiters.  In  Chapter  5,  I  model  a  warm  Neptune  with  clouds  and  hazes  to  characterize  the  first  ever  JWST  thermal  phase  curve.  Finally,  in  Chapter  6  I  conclude  with  a  discussion  of  the  future  direction  of  the  field  of  exoplanet  atmospheric  modeling.  Additionally,  I  include  two  supplementary  works  that  were  completed  concurrently  with  the  above  research  on  the  helium  enhancement  of  sub-Neptune  mass  atmospheres  through  fractionated  mass  loss.
■590    ▼aSchool  code:  0127.
■650  4▼aAstrophysics.
■650  4▼aAstronomy.
■650  4▼aPlanetology.
■653    ▼aExoplanet  atmospheres
■653    ▼aGeneral  Circulation  Models
■653    ▼aEmission  spectra
■653    ▼aJupiter
■653    ▼aNeptune
■690    ▼a0596
■690    ▼a0606
■690    ▼a0590
■71020▼aUniversity  of  Michigan▼bAstronomy  and  Astrophysics.
■7730  ▼tDissertations  Abstracts  International▼g86-03B.
■790    ▼a0127
■791    ▼aPh.D.
■792    ▼a2024
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T17164544▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    신착도서 더보기
    관련도서 더보기
    최근 3년간 통계입니다.

    소장정보

    • 예약
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • 나의폴더
    소장자료
    등록번호 청구기호 소장처 대출가능여부 대출정보
    TQ0032930 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * 대출중인 자료에 한하여 예약이 가능합니다. 예약을 원하시면 예약버튼을 클릭하십시오.

    해당 도서를 다른 이용자가 함께 대출한 도서

    관련도서

    관련 인기도서

    도서위치