본문

서브메뉴

Towards Autonomous Brain-Computer Interfaces: Approaches, Design, and Implementation.
Towards Autonomous Brain-Computer Interfaces: Approaches, Design, and Implementation.

상세정보

자료유형  
 학위논문
Control Number  
0017164641
International Standard Book Number  
9798346869054
Dewey Decimal Classification Number  
620
Main Entry-Personal Name  
Valencia, Daniel.
Publication, Distribution, etc. (Imprint  
[S.l.] : University of California, San Diego., 2024
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2024
Physical Description  
283 p.
General Note  
Source: Dissertations Abstracts International, Volume: 86-06, Section: B.
General Note  
Advisor: Alimohammad, Amir;Mercier, Patrick.
Dissertation Note  
Thesis (Ph.D.)--University of California, San Diego, 2024.
Summary, Etc.  
요약Autonomous brain-computer interfaces (BCIs) are devices designed to record, process, and interpret neural activity, enabling individuals with neurodegenerative diseases or spinal cord injuries to regain their ability to interact with their environment without assistance. Over the past two decades, BCI technology has advanced remarkably, largely due to improvements in neural recording interfaces, such as high-density micro-electrode arrays (MEAs). These innovations allow researchers to collect more comprehensive neural data, enhancing our understanding of neural dynamics and their interaction with human physiology. However, BCI technology still faces three major challenges that hinder its progression toward practical applications.1. Data Overload: Modern MEAs, with their increased number of recording channels, generate vast amounts of data. Consequently, the power consumption required to acquire, process, and transmit this data becomes a significant barrier, especially given tissue-safe design constraints. This dissertation investigates three effective approaches to reduce data rates, and thus power consumption: spike detection, spike sorting, and neural signal compression, all of which leverage relevant signal features for specific applications.2. Neural decoding versatility: No single neural decoding algorithm suits all applications or users. Therefore, a versatile BCI system must be capable of executing a range of neural decoding algorithms. This dissertation examines the efficient design and implementation of two processor architectures supporting various neural decoding schemes. One processor uses fine-grained sequential processing to implement arbitrary machine-learning-based neural decoding models, while the other employs biologically plausible neuron models to realize a spiking neural network.3. Autonomous user engagement: Traditional BCIs require users to engage with the system during predefined time periods. This dissertation explores two methods for estimating a user's intention to engage with a BCI application: one using high-frequency neural spikes and the other using low-frequency local field potentials. A hybrid (multi-signal) asynchronous BCI is designed, implemented, and verified, combining both neural signal types to optimize intention estimation and improve neural decoding performance.The approaches discussed in this dissertation present practical strategies to advance BCI technology by reducing power consumption, enabling flexible and robust neural decoding, and incorporating various neural signal features for efficient user intention estimation.
Subject Added Entry-Topical Term  
Engineering.
Subject Added Entry-Topical Term  
Computer engineering.
Subject Added Entry-Topical Term  
Electrical engineering.
Index Term-Uncontrolled  
Application-specific integrated circuits
Index Term-Uncontrolled  
Brain-computer interfaces
Index Term-Uncontrolled  
Digital circuits
Index Term-Uncontrolled  
Neural signal processing
Added Entry-Corporate Name  
University of California, San Diego Electrical and Computer Engineering (Joint Doctoral with SDSU)
Host Item Entry  
Dissertations Abstracts International. 86-06B.
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:656661

MARC

 008250224s2024        us  ||||||||||||||c||eng  d
■001000017164641
■00520250211153026
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798346869054
■035    ▼a(MiAaPQ)AAI31634001
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a620
■1001  ▼aValencia,  Daniel.
■24510▼aTowards  Autonomous  Brain-Computer  Interfaces:  Approaches,  Design,  and  Implementation.
■260    ▼a[S.l.]▼bUniversity  of  California,  San  Diego.  ▼c2024
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2024
■300    ▼a283  p.
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  86-06,  Section:  B.
■500    ▼aAdvisor:  Alimohammad,  Amir;Mercier,  Patrick.
■5021  ▼aThesis  (Ph.D.)--University  of  California,  San  Diego,  2024.
■520    ▼aAutonomous  brain-computer  interfaces  (BCIs)  are  devices  designed  to  record,  process,  and  interpret  neural  activity,  enabling  individuals  with  neurodegenerative  diseases  or  spinal  cord  injuries  to  regain  their  ability  to  interact  with  their  environment  without  assistance.  Over  the  past  two  decades,  BCI  technology  has  advanced  remarkably,  largely  due  to  improvements  in  neural  recording  interfaces,  such  as  high-density  micro-electrode  arrays  (MEAs).  These  innovations  allow  researchers  to  collect  more  comprehensive  neural  data,  enhancing  our  understanding  of  neural  dynamics  and  their  interaction  with  human  physiology.  However,  BCI  technology  still  faces  three  major  challenges  that  hinder  its  progression  toward  practical  applications.1.  Data  Overload:  Modern  MEAs,  with  their  increased  number  of  recording  channels,  generate  vast  amounts  of  data.  Consequently,  the  power  consumption  required  to  acquire,  process,  and  transmit  this  data  becomes  a  significant  barrier,  especially  given  tissue-safe  design  constraints.  This  dissertation  investigates  three  effective  approaches  to  reduce  data  rates,  and  thus  power  consumption:  spike  detection,  spike  sorting,  and  neural  signal  compression,  all  of  which  leverage  relevant  signal  features  for  specific  applications.2.  Neural  decoding  versatility:  No  single  neural  decoding  algorithm  suits  all  applications  or  users.  Therefore,  a  versatile  BCI  system  must  be  capable  of  executing  a  range  of  neural  decoding  algorithms.  This  dissertation  examines  the  efficient  design  and  implementation  of  two  processor  architectures  supporting  various  neural  decoding  schemes.  One  processor  uses  fine-grained  sequential  processing  to  implement  arbitrary  machine-learning-based  neural  decoding  models,  while  the  other  employs  biologically  plausible  neuron  models  to  realize  a  spiking  neural  network.3.  Autonomous  user  engagement:  Traditional  BCIs  require  users  to  engage  with  the  system  during  predefined  time  periods.  This  dissertation  explores  two  methods  for  estimating  a  user's  intention  to  engage  with  a  BCI  application:  one  using  high-frequency  neural  spikes  and  the  other  using  low-frequency  local  field  potentials.  A  hybrid  (multi-signal)  asynchronous  BCI  is  designed,  implemented,  and  verified,  combining  both  neural  signal  types  to  optimize  intention  estimation  and  improve  neural  decoding  performance.The  approaches  discussed  in  this  dissertation  present  practical  strategies  to  advance  BCI  technology  by  reducing  power  consumption,  enabling  flexible  and  robust  neural  decoding,  and  incorporating  various  neural  signal  features  for  efficient  user  intention  estimation.
■590    ▼aSchool  code:  0033.
■650  4▼aEngineering.
■650  4▼aComputer  engineering.
■650  4▼aElectrical  engineering.
■653    ▼aApplication-specific  integrated  circuits
■653    ▼aBrain-computer  interfaces
■653    ▼aDigital  circuits
■653    ▼aNeural  signal  processing
■690    ▼a0537
■690    ▼a0544
■690    ▼a0464
■71020▼aUniversity  of  California,  San  Diego▼bElectrical  and  Computer  Engineering  (Joint  Doctoral  with  SDSU).
■7730  ▼tDissertations  Abstracts  International▼g86-06B.
■790    ▼a0033
■791    ▼aPh.D.
■792    ▼a2024
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T17164641▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    Подробнее информация.

    • Бронирование
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • моя папка
    материал
    Reg No. Количество платежных Местоположение статус Ленд информации
    TQ0032783 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * Бронирование доступны в заимствований книги. Чтобы сделать предварительный заказ, пожалуйста, нажмите кнопку бронирование

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치