본문

서브메뉴

Electrochemically Engineering Heat and Mass Transfer for Sustainable Energy.
Electrochemically Engineering Heat and Mass Transfer for Sustainable Energy.

상세정보

자료유형  
 학위논문
Control Number  
0017164625
International Standard Book Number  
9798346875079
Dewey Decimal Classification Number  
620.11
Main Entry-Personal Name  
Sui, Chenxi.
Publication, Distribution, etc. (Imprint  
[S.l.] : The University of Chicago., 2024
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2024
Physical Description  
135 p.
General Note  
Source: Dissertations Abstracts International, Volume: 86-06, Section: B.
General Note  
Advisor: Hsu, Po-Chun.
Dissertation Note  
Thesis (Ph.D.)--The University of Chicago, 2024.
Summary, Etc.  
요약Sustainable energy is one of the most critical goals for humanity in the 21st century. While energy is essential for our prosperity, the increasing demand has led to excessive greenhouse gas emissions, contributing to global warming and extreme climate change. Developing sustainable energy solutions is, therefore, crucial to ensuring a better living environment for future generations. Energy efficiency, which focuses on reducing energy consumption without compromising quality of life, holds great promise due to its rapid implementation and cost-effectiveness. Electrochemistry plays a pivotal role in energy-saving technologies by enabling efficient energy storage, conversion, and management. In batteries, electrochemical reactions facilitate efficient energy storage, which is essential for balancing supply and demand, particularly when integrating renewable sources like solar and wind. These processes enhance energy efficiency, reduce emissions, and support grid stability by optimizing energy use. Electrochemical devices, such as electrochromic windows, further contribute to energy savings in buildings by regulating light and heat transmission, minimizing the need for heating, cooling, and lighting.This dissertation takes a multidisciplinary approach, integrating material design, thermal engineering, numerical simulations, materials synthesis, electrochemical device design, and advanced materials characterization. A key innovation is the development of an ultra-wideband transparent conducting electrode (UWB-TCE) with low sheet resistance and high optical transmittance, which enables an electrochromic device capable of managing both solar and radiative heat. This UWB-TCE allows the electrochromic device to switch between solar heating mode (high solar absorptivity, low thermal emissivity) and radiative cooling mode (low solar absorptivity, high thermal emissivity) by optimizing electrodeposition morphology for surface plasmon resonance, offering significant energy-saving potential for buildings.In addition, I designed vascularized porous electrodes for fast-charging batteries, enhancing ion transfer efficiency. Deep learning models were employed to accelerate the design process and deepen the understanding of underlying physical mechanisms. I also explored photonic strategies to improve radiative cooling materials, including smart textiles and coatings, through molecular design. These advancements not only demonstrate substantial energy-saving potential for buildings and personal thermal management but also provide deeper insights into the optical and thermal mechanisms that govern material performance.
Subject Added Entry-Topical Term  
Materials science.
Subject Added Entry-Topical Term  
Thermodynamics.
Index Term-Uncontrolled  
Deep learning
Index Term-Uncontrolled  
Electrochemistry
Index Term-Uncontrolled  
Fast-charging batteries
Index Term-Uncontrolled  
Heat transfer
Index Term-Uncontrolled  
Mass transfer
Index Term-Uncontrolled  
Radiative cooling
Added Entry-Corporate Name  
The University of Chicago Molecular Engineering
Host Item Entry  
Dissertations Abstracts International. 86-06B.
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:656570

MARC

 008250224s2024        us  ||||||||||||||c||eng  d
■001000017164625
■00520250211153024
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798346875079
■035    ▼a(MiAaPQ)AAI31633183
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a620.11
■1001  ▼aSui,  Chenxi.▼0(orcid)0000-0003-2244-8431
■24510▼aElectrochemically  Engineering  Heat  and  Mass  Transfer  for  Sustainable  Energy.
■260    ▼a[S.l.]▼bThe  University  of  Chicago.  ▼c2024
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2024
■300    ▼a135  p.
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  86-06,  Section:  B.
■500    ▼aAdvisor:  Hsu,  Po-Chun.
■5021  ▼aThesis  (Ph.D.)--The  University  of  Chicago,  2024.
■520    ▼aSustainable  energy  is  one  of  the  most  critical  goals  for  humanity  in  the  21st  century.  While  energy  is  essential  for  our  prosperity,  the  increasing  demand  has  led  to  excessive  greenhouse  gas  emissions,  contributing  to  global  warming  and  extreme  climate  change.  Developing  sustainable  energy  solutions  is,  therefore,  crucial  to  ensuring  a  better  living  environment  for  future  generations.  Energy  efficiency,  which  focuses  on  reducing  energy  consumption  without  compromising  quality  of  life,  holds  great  promise  due  to  its  rapid  implementation  and  cost-effectiveness.  Electrochemistry  plays  a  pivotal  role  in  energy-saving  technologies  by  enabling  efficient  energy  storage,  conversion,  and  management.  In  batteries,  electrochemical  reactions  facilitate  efficient  energy  storage,  which  is  essential  for  balancing  supply  and  demand,  particularly  when  integrating  renewable  sources  like  solar  and  wind.  These  processes  enhance  energy  efficiency,  reduce  emissions,  and  support  grid  stability  by  optimizing  energy  use.  Electrochemical  devices,  such  as  electrochromic  windows,  further  contribute  to  energy  savings  in  buildings  by  regulating  light  and  heat  transmission,  minimizing  the  need  for  heating,  cooling,  and  lighting.This  dissertation  takes  a  multidisciplinary  approach,  integrating  material  design,  thermal  engineering,  numerical  simulations,  materials  synthesis,  electrochemical  device  design,  and  advanced  materials  characterization.  A  key  innovation  is  the  development  of  an  ultra-wideband  transparent  conducting  electrode  (UWB-TCE)  with  low  sheet  resistance  and  high  optical  transmittance,  which  enables  an  electrochromic  device  capable  of  managing  both  solar  and  radiative  heat.  This  UWB-TCE  allows  the  electrochromic  device  to  switch  between  solar  heating  mode  (high  solar  absorptivity,  low  thermal  emissivity)  and  radiative  cooling  mode  (low  solar  absorptivity,  high  thermal  emissivity)  by  optimizing  electrodeposition  morphology  for  surface  plasmon  resonance,  offering  significant  energy-saving  potential  for  buildings.In  addition,  I  designed  vascularized  porous  electrodes  for  fast-charging  batteries,  enhancing  ion  transfer  efficiency.  Deep  learning  models  were  employed  to  accelerate  the  design  process  and  deepen  the  understanding  of  underlying  physical  mechanisms.  I  also  explored  photonic  strategies  to  improve  radiative  cooling  materials,  including  smart  textiles  and  coatings,  through  molecular  design.  These  advancements  not  only  demonstrate  substantial  energy-saving  potential  for  buildings  and  personal  thermal  management  but  also  provide  deeper  insights  into  the  optical  and  thermal  mechanisms  that  govern  material  performance.
■590    ▼aSchool  code:  0330.
■650  4▼aMaterials  science.
■650  4▼aThermodynamics.
■653    ▼aDeep  learning
■653    ▼aElectrochemistry
■653    ▼aFast-charging  batteries
■653    ▼aHeat  transfer
■653    ▼aMass  transfer
■653    ▼aRadiative  cooling
■690    ▼a0794
■690    ▼a0800
■690    ▼a0348
■71020▼aThe  University  of  Chicago▼bMolecular  Engineering.
■7730  ▼tDissertations  Abstracts  International▼g86-06B.
■790    ▼a0330
■791    ▼aPh.D.
■792    ▼a2024
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T17164625▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    신착도서 더보기
    관련도서 더보기
    최근 3년간 통계입니다.

    소장정보

    • 예약
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • 나의폴더
    소장자료
    등록번호 청구기호 소장처 대출가능여부 대출정보
    TQ0032692 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * 대출중인 자료에 한하여 예약이 가능합니다. 예약을 원하시면 예약버튼을 클릭하십시오.

    해당 도서를 다른 이용자가 함께 대출한 도서

    관련도서

    관련 인기도서

    도서위치