본문

서브메뉴

Interplay Between Oxidation State and Ligand Environment to Control Reactivity and Selectivity with Homogeneous Nickel.
Interplay Between Oxidation State and Ligand Environment to Control Reactivity and Selectivity with Homogeneous Nickel.

상세정보

자료유형  
 학위논문
Control Number  
0017164673
International Standard Book Number  
9798346866633
Dewey Decimal Classification Number  
547
Main Entry-Personal Name  
Rubel, Camille Z.
Publication, Distribution, etc. (Imprint  
[S.l.] : The Scripps Research Institute., 2024
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2024
Physical Description  
794 p.
General Note  
Source: Dissertations Abstracts International, Volume: 86-06, Section: B.
General Note  
Advisor: Engle, Keary M.
Dissertation Note  
Thesis (Ph.D.)--The Scripps Research Institute, 2024.
Summary, Etc.  
요약The two main factors that govern the properties of a transition metal catalyst are its ligand environment and its oxidation state. These attributes determine not only a catalyst's geometry, but also its solubility, redox activity, speciation, and size and polarizability. We hypothesized that altering Ni's ligand environment could influence its propensity to undergo changes in oxidation state, thereby leading to greater control over its reactivity. The interplay between reactivity and selectivity was studied in three settings: (i) as a stand-alone organometallic complex; (ii) while undergoing a change in oxidation state from NiII to Ni0; and (iii) as propagating catalysts during organic transformations.As a stand-alone organometallic complex, zerovalent sources of nickel are useful because nickel can enter a catalytic cycle directly through ligand exchange, without relying on changes in oxidation state to generate the desired catalyst. However, the primary source of Ni0 is Ni(COD)2 (COD = cyclooctadiene), an air- and temperature-sensitive solid that is unamenable to use on process scale. To overcome the limitations of Ni(COD)2, we created a toolkit of ten air and silica-gel-stable Ni0 precatalysts that lie further towards the reactivity side of the stability/reactivity continuum. We demonstrated how the Ni0 toolkit overcomes the limitations of both Ni(COD)2 and Ni(COD)(DQ) in reactions from the recent literature.Reduction of high valent nickel is invoked in reductive cross coupling catalysis, in-situ reduction to initiate a redox-neutral catalytic cycle, and the preparative generation of generate Ni0 organometallic complexes. The latter two frequently require harsh reductants. We recognized that electrochemistry, which relies on electrons and holes rather than their chemical surrogates, would be a more expedient way to access Ni(COD)2 and other common Ni0 precatalysts, including our own air-stable precatalyst toolkit. Reaction conditions were developed with a standard, commercial electrochemical cell, ultimately giving up to 85% yields of Ni(COD)2. Those conditions were general for of a variety of Ni0 complexes, including the aforementioned air-stable Ni0 complexes.Alkene isomerization is the most efficient way to form internal alkenes from terminal feedstocks, but controlling regio- and stereoselectivity with transition metal catalysts remains challenging. Ni-catalyzed Z- and E-selective alkene one-carbon transposition reactions were discovered. The key to these operationally simple, regioselective and stereodivergent reactions was the ability for Ni to traverse oxidation states through interaction with electrophiles to generate selective catalysts. This work also describes a tungsten-catalyzed, positionally selective alkene isomerization reaction in which tuning the ligand environment grants access to either the E- or Z-stereoisomer. Preliminary mechanistic studies suggest that the ligand environment around 7-coordinate tungsten is crucial for stereoselectivity, and that substrate directivity prevents over-isomerization to the conjugated alkene. These features allow for exclusive formation of β,γ-unsaturated carbonyl compounds that are otherwise difficult to prepare.The nickel-catalyzed difunctionalization of alkenes is a useful synthetic strategy for the generation of two C(sp3)-X bonds (X = C- or heteroatom-based groups). However, achieving reactivity with unactivated alkenes is challenging due to their lower binding strength to transition metals. To overcome the low reactivity of unactivated alkenes, our lab has employed directing groups that recruit metals towards the alkene. As part of our group's goal of using native directing groups to control reactivity with nickel, we thought to capitalize on nickel's affinity for the C=C double bonds in 1,5-cyclooctadiene (COD) to engage olefins as directing groups. Employing COD as substrate, nickel was found to catalyze the diarylation of one of the olefins, resulting in 5,6-diphenyl cyclooctene. These products were subjected to ring opening polymerization metathesis (ROMP) to form polymers with sequences with head-to-head styrene dyads, a previously unexplored structure due to the challenge of a de-novo synthesis of 5,6-diaryl cyclooctene.
Subject Added Entry-Topical Term  
Organic chemistry.
Subject Added Entry-Topical Term  
Polymer chemistry.
Subject Added Entry-Topical Term  
Physical chemistry.
Subject Added Entry-Topical Term  
Materials science.
Index Term-Uncontrolled  
Catalysis
Index Term-Uncontrolled  
Electrochemistry
Index Term-Uncontrolled  
Isomerization
Index Term-Uncontrolled  
Nickel
Index Term-Uncontrolled  
Polymers
Index Term-Uncontrolled  
Tungsten
Added Entry-Corporate Name  
The Scripps Research Institute Chemistry
Host Item Entry  
Dissertations Abstracts International. 86-06B.
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:656429

MARC

 008250224s2024        us  ||||||||||||||c||eng  d
■001000017164673
■00520250211153030
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798346866633
■035    ▼a(MiAaPQ)AAI31635450
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a547
■1001  ▼aRubel,  Camille  Z.
■24510▼aInterplay  Between  Oxidation  State  and  Ligand  Environment  to  Control  Reactivity  and  Selectivity  with  Homogeneous  Nickel.
■260    ▼a[S.l.]▼bThe  Scripps  Research  Institute.  ▼c2024
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2024
■300    ▼a794  p.
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  86-06,  Section:  B.
■500    ▼aAdvisor:  Engle,  Keary  M.
■5021  ▼aThesis  (Ph.D.)--The  Scripps  Research  Institute,  2024.
■520    ▼aThe  two  main  factors  that  govern  the  properties  of  a  transition  metal  catalyst  are  its  ligand  environment  and  its  oxidation  state.  These  attributes  determine  not  only  a  catalyst's  geometry,  but  also  its  solubility,  redox  activity,  speciation,  and  size  and  polarizability.  We  hypothesized  that  altering  Ni's  ligand  environment  could  influence  its  propensity  to  undergo  changes  in  oxidation  state,  thereby  leading  to  greater  control  over  its  reactivity.  The  interplay  between  reactivity  and  selectivity  was  studied  in  three  settings:  (i)  as  a  stand-alone  organometallic  complex;  (ii)  while  undergoing  a  change  in  oxidation  state  from  NiII  to  Ni0;  and  (iii)  as  propagating  catalysts  during  organic  transformations.As  a  stand-alone  organometallic  complex,  zerovalent  sources  of  nickel  are  useful  because  nickel  can  enter  a  catalytic  cycle  directly  through  ligand  exchange,  without  relying  on  changes  in  oxidation  state  to  generate  the  desired  catalyst.  However,  the  primary  source  of  Ni0  is  Ni(COD)2  (COD  =  cyclooctadiene),  an  air-  and  temperature-sensitive  solid  that  is  unamenable  to  use  on  process  scale.  To  overcome  the  limitations  of  Ni(COD)2,  we  created  a  toolkit  of  ten  air  and  silica-gel-stable  Ni0  precatalysts  that  lie  further  towards  the  reactivity  side  of  the  stability/reactivity  continuum.  We  demonstrated  how  the  Ni0  toolkit  overcomes  the  limitations  of  both  Ni(COD)2  and  Ni(COD)(DQ)  in  reactions  from  the  recent  literature.Reduction  of  high  valent  nickel  is  invoked  in  reductive  cross  coupling  catalysis,  in-situ  reduction  to  initiate  a  redox-neutral  catalytic  cycle,  and  the  preparative  generation  of  generate  Ni0  organometallic  complexes.  The  latter  two  frequently  require  harsh  reductants.  We  recognized  that  electrochemistry,  which  relies  on  electrons  and  holes  rather  than  their  chemical  surrogates,  would  be  a  more  expedient  way  to  access  Ni(COD)2  and  other  common  Ni0  precatalysts,  including  our  own  air-stable  precatalyst  toolkit.  Reaction  conditions  were  developed  with  a  standard,  commercial  electrochemical  cell,  ultimately  giving  up  to  85%  yields  of  Ni(COD)2.  Those  conditions  were  general  for  of  a  variety  of  Ni0  complexes,  including  the  aforementioned  air-stable  Ni0  complexes.Alkene  isomerization  is  the  most  efficient  way  to  form  internal  alkenes  from  terminal  feedstocks,  but  controlling  regio-  and  stereoselectivity  with  transition  metal  catalysts  remains  challenging.  Ni-catalyzed  Z-  and  E-selective  alkene  one-carbon  transposition  reactions  were  discovered.  The  key  to  these  operationally  simple,  regioselective  and  stereodivergent  reactions  was  the  ability  for  Ni  to  traverse  oxidation  states  through  interaction  with  electrophiles  to  generate  selective  catalysts.  This  work  also  describes  a  tungsten-catalyzed,  positionally  selective  alkene  isomerization  reaction  in  which  tuning  the  ligand  environment  grants  access  to  either  the  E-  or  Z-stereoisomer.  Preliminary  mechanistic  studies  suggest  that  the  ligand  environment  around  7-coordinate  tungsten  is  crucial  for  stereoselectivity,  and  that  substrate  directivity  prevents  over-isomerization  to  the  conjugated  alkene.  These  features  allow  for  exclusive  formation  of  β,γ-unsaturated  carbonyl  compounds  that  are  otherwise  difficult  to  prepare.The  nickel-catalyzed  difunctionalization  of  alkenes  is  a  useful  synthetic  strategy  for  the  generation  of  two  C(sp3)-X  bonds  (X  =  C-  or  heteroatom-based  groups).  However,  achieving  reactivity  with  unactivated  alkenes  is  challenging  due  to  their  lower  binding  strength  to  transition  metals.  To  overcome  the  low  reactivity  of  unactivated  alkenes,  our  lab  has  employed  directing  groups  that  recruit  metals  towards  the  alkene.  As  part  of  our  group's  goal  of  using  native  directing  groups  to  control  reactivity  with  nickel,  we  thought  to  capitalize  on  nickel's  affinity  for  the  C=C  double  bonds  in  1,5-cyclooctadiene  (COD)  to  engage  olefins  as  directing  groups.  Employing  COD  as  substrate,  nickel  was  found  to  catalyze  the  diarylation  of  one  of  the  olefins,  resulting  in  5,6-diphenyl  cyclooctene.  These  products  were  subjected  to  ring  opening  polymerization  metathesis  (ROMP)  to  form  polymers  with  sequences  with  head-to-head  styrene  dyads,  a  previously  unexplored  structure  due  to  the  challenge  of  a  de-novo  synthesis  of  5,6-diaryl  cyclooctene.
■590    ▼aSchool  code:  1179.
■650  4▼aOrganic  chemistry.
■650  4▼aPolymer  chemistry.
■650  4▼aPhysical  chemistry.
■650  4▼aMaterials  science.
■653    ▼aCatalysis
■653    ▼aElectrochemistry
■653    ▼aIsomerization
■653    ▼aNickel
■653    ▼aPolymers
■653    ▼aTungsten
■690    ▼a0490
■690    ▼a0495
■690    ▼a0494
■690    ▼a0794
■71020▼aThe  Scripps  Research  Institute▼bChemistry.
■7730  ▼tDissertations  Abstracts  International▼g86-06B.
■790    ▼a1179
■791    ▼aPh.D.
■792    ▼a2024
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T17164673▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    詳細情報

    • 予約
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • 私のフォルダ
    資料
    登録番号 請求記号 場所 ステータス 情報を貸す
    TQ0032551 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    *ご予約は、借入帳でご利用いただけます。予約をするには、予約ボタンをクリックしてください

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치