본문

서브메뉴

Towards Secure and Safe AI-enabled Systems Through Optimizations.
내용보기
Towards Secure and Safe AI-enabled Systems Through Optimizations.
자료유형  
 학위논문
Control Number  
0017162754
International Standard Book Number  
9798342108003
Dewey Decimal Classification Number  
150
Main Entry-Personal Name  
Tao, Guanhong.
Publication, Distribution, etc. (Imprint  
[S.l.] : Purdue University., 2024
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2024
Physical Description  
213 p.
General Note  
Source: Dissertations Abstracts International, Volume: 86-05, Section: B.
General Note  
Advisor: Zhang, Xiangyu;Li, Ninghui;Xue, Yexiang;Tan, Lin.
Dissertation Note  
Thesis (Ph.D.)--Purdue University, 2024.
Summary, Etc.  
요약Artificial intelligence (AI) is increasingly integrated into critical systems across various sectors, including public surveillance, autonomous driving, and malware detection. Despite their impressive performance and promise, the security and safety of AI-enabled systems remain significant concerns. Like conventional systems that have software bugs or vulnerabilities, applications leveraging AI are also susceptible to such issues. Malicious behaviors can be intentionally injected into AI models by adversaries, creating a backdoor. These models operate normally with benign inputs but consistently misclassify samples containing an attacker-inserted trigger, known as a backdoor attack.However, backdoors can not only be injected by an attacker but may also naturally exist in normally trained models. One can find backdoor triggers in benign models that cause any inputs with the trigger to be misclassified, a phenomenon termed natural backdoors. Regardless of whether they are injected or natural, backdoors can take various forms, which increases the difficulty of identifying such vulnerabilities. This challenge is exacerbated when access to AI models is limited.This dissertation introduces an optimization-based technique that reverse-engineers trigger patterns exploited by backdoors, whether injected or natural. It formulates how backdoor triggers modify inputs down to the pixel level to approximate their potential forms. The intended changes in output predictions guide the reverse-engineering process, which involves computing the input gradient or sampling possible perturbations when model access is limited. Although various types of backdoors exist, this dissertation demonstrates that they can be effectively clustered into two categories based on their methods of input manipulation. The development of practical reverse-engineering approaches is based on this fundamental classification, leading to the successful identification of backdoor vulnerabilities in AI models.To alleviate such security threats, this dissertation introduces a novel hardening technique that enhances the robustness of models against adversary exploitation. It sheds light on the existence of backdoors, which can often be attributed to the small distance between two classes. Based on this analysis, a class distance hardening method is proposed to proactively enlarge the distance between every pair of classes in a model. This method is effective in eliminating both injected and natural backdoors in a variety of forms.This dissertation aims to highlight both existing and newly identified security and safety challenges in AI systems. It introduces novel formulations of backdoor trigger patterns and provides a fundamental understanding of backdoor vulnerabilities, paving the way for the development of safer and more secure AI systems.
Subject Added Entry-Topical Term  
Success.
Subject Added Entry-Topical Term  
Systems science.
Added Entry-Corporate Name  
Purdue University.
Host Item Entry  
Dissertations Abstracts International. 86-05B.
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:656344
신착도서 더보기
최근 3년간 통계입니다.

소장정보

  • 예약
  • 캠퍼스간 도서대출
  • 서가에 없는 책 신고
  • 나의폴더
소장자료
등록번호 청구기호 소장처 대출가능여부 대출정보
TQ0032466 T   원문자료 열람가능/출력가능 열람가능/출력가능
마이폴더 부재도서신고

* 대출중인 자료에 한하여 예약이 가능합니다. 예약을 원하시면 예약버튼을 클릭하십시오.

해당 도서를 다른 이용자가 함께 대출한 도서

관련도서

관련 인기도서

도서위치