본문

서브메뉴

Towards Computational Modeling of Polymer Structure During Depolymerization.
Towards Computational Modeling of Polymer Structure During Depolymerization.

상세정보

자료유형  
 학위논문
Control Number  
0017164044
International Standard Book Number  
9798346856917
Dewey Decimal Classification Number  
660
Main Entry-Personal Name  
Coile, Matthew W.
Publication, Distribution, etc. (Imprint  
[S.l.] : Northwestern University., 2024
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2024
Physical Description  
193 p.
General Note  
Source: Dissertations Abstracts International, Volume: 86-06, Section: B.
General Note  
Advisor: Broadbelt, Linda J.
Dissertation Note  
Thesis (Ph.D.)--Northwestern University, 2024.
Summary, Etc.  
요약Plastic waste represents a key challenge and opportunity of the 21st century. Chemical recycling is an alternative to traditional mechanical recycling that converts the polymer back to its monomeric state, enabling repolymerization to a new material with no loss of physical properties. Models can play a key role in developing this technology, as the design space is large (many polymers and reaction conditions), and models can enhance our fundamental understanding and predict the effect of different reaction conditions on the depolymerization process. However, plastics are complex distributions of polymer chains, potentially with additives, and their depolymerization can involve kinetic and transport phenomena that current models are typically not well-equipped to handle. Additionally, depolymerization can be affected by the initial distribution of polymeric material, and so knowing or predicting the results of the relevant polymerization is critical as well.In this dissertation, a kinetic Monte Carlo (kMC) framework is developed that tracks detail of the polymer system, first during polymerization, then during reversible polymerization to lay the groundwork for depolymerization studies, and finally during depolymerization via solvolysis. The first portion of this dissertation focuses on tracking chain-level detail of the most common class of plastics that is not currently recyclable save for carpet underlay, polyurethanes. The second portion of this dissertation focuses on extending this framework to the reversible polymerization of a hyperbranched polyester system that shows promise for monomer recovery at its end of life. The third portion of this dissertation returns to the polyurethane case and examines chemical recycling of polyurethanes back to monomeric form. The final portion of this dissertation describes research carried out in collaboration with ADM to extend the group's cellulose pyrolysis model by examining reactions relevant to water-mediated glucose pyrolysis. The dissertation concludes with a summary and outlook for future work in this area. Collectively, this work advances the state-of-the-art kinetic models used for modeling chemical recycling, enabling more rigorous accounting of mechanistic detail, more detailed predictions of product distributions, and their coupling with chain-length dependent transport phenomena. This will aid the design of next generation recycling technology, enabling us to capture value from the enormous potential represented by humankind's production of plastic waste.
Subject Added Entry-Topical Term  
Chemical engineering.
Subject Added Entry-Topical Term  
Chemistry.
Subject Added Entry-Topical Term  
Polymer chemistry.
Index Term-Uncontrolled  
Plastic waste
Index Term-Uncontrolled  
Polymerization
Index Term-Uncontrolled  
Glucose pyrolysis
Index Term-Uncontrolled  
Depolymerization process
Index Term-Uncontrolled  
Polyester system
Added Entry-Corporate Name  
Northwestern University Chemical and Biological Engineering
Host Item Entry  
Dissertations Abstracts International. 86-06B.
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:656340

MARC

 008250224s2024        us  ||||||||||||||c||eng  d
■001000017164044
■00520250211152825
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798346856917
■035    ▼a(MiAaPQ)AAI31559958
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a660
■1001  ▼aCoile,  Matthew  W.▼0(orcid)0000-0003-2147-1728
■24510▼aTowards  Computational  Modeling  of  Polymer  Structure  During  Depolymerization.
■260    ▼a[S.l.]▼bNorthwestern  University.  ▼c2024
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2024
■300    ▼a193  p.
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  86-06,  Section:  B.
■500    ▼aAdvisor:  Broadbelt,  Linda  J.
■5021  ▼aThesis  (Ph.D.)--Northwestern  University,  2024.
■520    ▼aPlastic  waste  represents  a  key  challenge  and  opportunity  of  the  21st  century.  Chemical  recycling  is  an  alternative  to  traditional  mechanical  recycling  that  converts  the  polymer  back  to  its  monomeric  state,  enabling  repolymerization  to  a  new  material  with  no  loss  of  physical  properties.  Models  can  play  a  key  role  in  developing  this  technology,  as  the  design  space  is  large  (many  polymers  and  reaction  conditions),  and  models  can  enhance  our  fundamental  understanding  and  predict  the  effect  of  different  reaction  conditions  on  the  depolymerization  process.  However,  plastics  are  complex  distributions  of  polymer  chains,  potentially  with  additives,  and  their  depolymerization  can  involve  kinetic  and  transport  phenomena  that  current  models  are  typically  not  well-equipped  to  handle.  Additionally,  depolymerization  can  be  affected  by  the  initial  distribution  of  polymeric  material,  and  so  knowing  or  predicting  the  results  of  the  relevant  polymerization  is  critical  as  well.In  this  dissertation,  a  kinetic  Monte  Carlo  (kMC)  framework  is  developed  that  tracks  detail  of  the  polymer  system,  first  during  polymerization,  then  during  reversible  polymerization  to  lay  the  groundwork  for  depolymerization  studies,  and  finally  during  depolymerization  via  solvolysis.  The  first  portion  of  this  dissertation  focuses  on  tracking  chain-level  detail  of  the  most  common  class  of  plastics  that  is  not  currently  recyclable  save  for  carpet  underlay,  polyurethanes.  The  second  portion  of  this  dissertation  focuses  on  extending  this  framework  to  the  reversible  polymerization  of  a  hyperbranched  polyester  system  that  shows  promise  for  monomer  recovery  at  its  end  of  life.  The  third  portion  of  this  dissertation  returns  to  the  polyurethane  case  and  examines  chemical  recycling  of  polyurethanes  back  to  monomeric  form.  The  final  portion  of  this  dissertation  describes  research  carried  out  in  collaboration  with  ADM  to  extend  the  group's  cellulose  pyrolysis  model  by  examining  reactions  relevant  to  water-mediated  glucose  pyrolysis.  The  dissertation  concludes  with a  summary  and  outlook  for  future  work  in  this  area.  Collectively,  this  work  advances  the  state-of-the-art  kinetic  models  used  for  modeling  chemical  recycling,  enabling  more  rigorous  accounting  of  mechanistic  detail,  more  detailed  predictions  of  product  distributions,  and  their  coupling  with  chain-length  dependent  transport  phenomena.  This  will  aid  the  design  of  next  generation  recycling  technology,  enabling  us  to  capture  value  from  the  enormous  potential  represented  by  humankind's  production  of  plastic  waste.
■590    ▼aSchool  code:  0163.
■650  4▼aChemical  engineering.
■650  4▼aChemistry.
■650  4▼aPolymer  chemistry.
■653    ▼aPlastic  waste
■653    ▼aPolymerization
■653    ▼aGlucose  pyrolysis
■653    ▼aDepolymerization  process
■653    ▼aPolyester  system
■690    ▼a0542
■690    ▼a0495
■690    ▼a0485
■71020▼aNorthwestern  University▼bChemical  and  Biological  Engineering.
■7730  ▼tDissertations  Abstracts  International▼g86-06B.
■790    ▼a0163
■791    ▼aPh.D.
■792    ▼a2024
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T17164044▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    高级搜索信息

    • 预订
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • 我的文件夹
    材料
    注册编号 呼叫号码. 收藏 状态 借信息.
    TQ0032462 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    *保留在借用的书可用。预订,请点击预订按钮

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치