본문

서브메뉴

Politics Meets the Internet: Three Essays on Social Learning.
Politics Meets the Internet: Three Essays on Social Learning.

상세정보

자료유형  
 학위논문
Control Number  
0017160895
International Standard Book Number  
9798382261287
Dewey Decimal Classification Number  
519
Main Entry-Personal Name  
Cremin, John Walter Edward.
Publication, Distribution, etc. (Imprint  
[S.l.] : Columbia University., 2024
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2024
Physical Description  
152 p.
General Note  
Source: Dissertations Abstracts International, Volume: 85-10, Section: B.
General Note  
Advisor: Sadler, Evan D.
Dissertation Note  
Thesis (Ph.D.)--Columbia University, 2024.
Summary, Etc.  
요약This dissertation studies three models of sequential social learning, each of which has implications for the impact of the internet and social media on political discourse. I take three features of online political discussion, and consider in what ways they interfere with or assist learning.In Chapter 1, I consider agents who engage in motivated reasoning, which is a belief-formation procedure in which agents trade-off a desire to form accurate beliefs against a desire to hold ideologically congenial beliefs. Taking a model of motivated reasoning in which agents can reject social signals that provide too strong evidence against their preferred state, I analyse under which conditions we can expect asymptotic consensus, where all agents choose the same action, and learning, in which Bayesian agents choose the correct state with probability 1. I find that learning requires much more connected observation networks than is the case with Bayesian agents. Furthermore, I find that increasing the precision of agents' private signals can actually break consensus, providing an explanation for the advance of factual polarisation despite the greater access to information that the internet provides.In Chapter 2, I evaluate the importance of timidity. In the presence of agents who prefer not to be caught in error publicly, and can choose to keep their views to themselves given this, insufficiently confident individuals may choose not to participate in online debate. Studying social learning in this setting, I discover an unravelling mechanism by which non-partisan agents drop out of online political discourse. This leads to an exaggerated online presence for partisans, which can cause even more Bayesian agents to drop out. I consider the possibility of introducing partially anonymous commenting, how this could prevent such unravelling, and what restrictions on such commenting would be desirable.In Chapter 3, my focus moves on to considering rational inattention, and how this interacts with the glut of information the internet has produced. I set out a model that incorporates the costly observation of private and social information, and derive conditions under which we should expect learning to obtain despite these costs. I find that expanding access to cheap information can actually damage learning: giving all agents Blackwell-preferred signals or cheaper observations of all their neighbors can reduce the asymptotic probability with which they match the state. Furthermore, the highly connected networks social media produces can generate a public good problem in investigate journalism, damaging the 'information ecosystem' further still.
Subject Added Entry-Topical Term  
Applied mathematics.
Subject Added Entry-Topical Term  
Web studies.
Subject Added Entry-Topical Term  
Political science.
Index Term-Uncontrolled  
Information economics
Index Term-Uncontrolled  
Internet
Index Term-Uncontrolled  
Networks
Index Term-Uncontrolled  
Political economy
Index Term-Uncontrolled  
Social learning
Added Entry-Corporate Name  
Columbia University Economics
Host Item Entry  
Dissertations Abstracts International. 85-10B.
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:656275

MARC

 008250224s2024        us  ||||||||||||||c||eng  d
■001000017160895
■00520250211151132
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798382261287
■035    ▼a(MiAaPQ)AAI31147769
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a519
■1001  ▼aCremin,  John  Walter  Edward.
■24510▼aPolitics  Meets  the  Internet:  Three  Essays  on  Social  Learning.
■260    ▼a[S.l.]▼bColumbia  University.  ▼c2024
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2024
■300    ▼a152  p.
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  85-10,  Section:  B.
■500    ▼aAdvisor:  Sadler,  Evan  D.
■5021  ▼aThesis  (Ph.D.)--Columbia  University,  2024.
■520    ▼aThis  dissertation  studies  three  models  of  sequential  social  learning,  each  of  which  has  implications  for  the  impact  of  the  internet  and  social  media  on  political  discourse.  I  take  three  features  of  online  political  discussion,  and  consider  in  what  ways  they  interfere  with  or  assist  learning.In  Chapter  1,  I  consider  agents  who  engage  in  motivated  reasoning,  which  is  a  belief-formation  procedure  in  which  agents  trade-off  a  desire  to  form  accurate  beliefs  against  a  desire  to  hold  ideologically  congenial  beliefs.  Taking  a  model  of  motivated  reasoning  in  which  agents  can  reject  social  signals  that  provide  too  strong  evidence  against  their  preferred  state,  I  analyse  under  which  conditions  we  can  expect  asymptotic  consensus,  where  all  agents  choose  the  same  action,  and  learning,  in  which  Bayesian  agents  choose  the  correct  state  with  probability  1.  I  find  that  learning  requires  much  more  connected  observation  networks  than  is  the  case  with  Bayesian  agents.  Furthermore,  I  find  that  increasing  the  precision  of  agents'  private  signals  can  actually  break  consensus,  providing  an  explanation  for  the  advance  of  factual  polarisation  despite  the  greater  access  to  information  that  the  internet  provides.In  Chapter  2,  I  evaluate  the  importance  of  timidity.  In  the  presence  of  agents  who  prefer  not  to  be  caught  in  error  publicly,  and  can  choose  to  keep  their  views  to  themselves  given  this,  insufficiently  confident  individuals  may  choose  not  to  participate  in  online  debate.  Studying  social  learning  in  this  setting,  I  discover  an  unravelling  mechanism  by  which  non-partisan  agents  drop  out  of  online  political  discourse.  This  leads  to  an  exaggerated  online  presence  for  partisans,  which  can  cause  even  more  Bayesian  agents  to  drop  out.  I  consider  the  possibility  of  introducing  partially  anonymous  commenting,  how  this  could  prevent  such  unravelling,  and  what  restrictions  on  such  commenting  would  be  desirable.In  Chapter  3,  my  focus  moves  on  to  considering  rational  inattention,  and  how  this  interacts  with  the  glut  of  information  the  internet  has  produced.  I  set  out  a  model  that  incorporates  the  costly  observation  of  private  and  social  information,  and  derive  conditions  under  which  we  should  expect  learning  to  obtain  despite  these  costs.  I  find  that  expanding  access  to  cheap  information  can  actually  damage  learning:  giving  all  agents  Blackwell-preferred  signals  or  cheaper  observations  of  all  their  neighbors  can  reduce  the  asymptotic  probability  with  which  they  match  the  state.  Furthermore,  the  highly  connected  networks  social  media  produces  can  generate  a  public  good  problem  in  investigate  journalism,  damaging  the  'information  ecosystem'  further  still.
■590    ▼aSchool  code:  0054.
■650  4▼aApplied  mathematics.
■650  4▼aWeb  studies.
■650  4▼aPolitical  science.
■653    ▼aInformation  economics
■653    ▼aInternet
■653    ▼aNetworks
■653    ▼aPolitical  economy
■653    ▼aSocial  learning
■690    ▼a0511
■690    ▼a0501
■690    ▼a0646
■690    ▼a0615
■690    ▼a0364
■71020▼aColumbia  University▼bEconomics.
■7730  ▼tDissertations  Abstracts  International▼g85-10B.
■790    ▼a0054
■791    ▼aPh.D.
■792    ▼a2024
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T17160895▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    高级搜索信息

    • 预订
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • 我的文件夹
    材料
    注册编号 呼叫号码. 收藏 状态 借信息.
    TQ0032397 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    *保留在借用的书可用。预订,请点击预订按钮

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치