본문

서브메뉴

Programmable Entanglement of Atomic Ensembles for Quantum Metrology.
Programmable Entanglement of Atomic Ensembles for Quantum Metrology.

상세정보

자료유형  
 학위논문
Control Number  
0017164903
International Standard Book Number  
9798346390480
Dewey Decimal Classification Number  
910.285
Main Entry-Personal Name  
Cooper, Eric Scott.
Publication, Distribution, etc. (Imprint  
[S.l.] : Stanford University., 2024
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2024
Physical Description  
126 p.
General Note  
Source: Dissertations Abstracts International, Volume: 86-05, Section: B.
General Note  
Advisor: Schleier-Smith, Monika.
Dissertation Note  
Thesis (Ph.D.)--Stanford University, 2024.
Summary, Etc.  
요약State of the art atomic sensors typically consist of many atoms working in parallel. When engineered to eliminate technical noise, these sensors approach the standard quantum limit set by the quantum projection noise of independent atoms. Optical cavities enable single-parameter sensing beyond this limit by efficiently generating all-to-all entanglement. However, extending quantum advantage to tasks like imaging or sensor networks requires additional spatial control over entanglement. In this thesis, we combine global cavity-mediated interactions with local spin rotations to generate and leverage structured, non-local entanglement for multimode quantum metrology.In our system, all-to-all interactions mediated by an optical cavity produce spin-nematic squeezing. This form of squeezing, which leverages the spin-1 nature of the ground state of rubidium atoms, is robust against sources of technical noise including global magnetic field drift. These robust dynamics, previously demonstrated with collisional interactions in spinor condensates, are a useful tool for exploring novel metrology protocols. In particular, we leverage these dynamics in echo-based interferometry sequences, demonstrating up to 6 dB of metrological gain by using interactions both to generate entanglement and to amplify displacements before readout.By interspersing global interactions with local rotations, we can either localize entanglement to within subsystems or demonstrate non-local entanglement. In system sizes of up to four ensembles, we have demonstrated that this scheme produces continuous variable graph states with provable entanglement structures (specified by the graph) and metrologically useful multimode spin squeezing. By using a magnetic field gradient to perform local rotations among up to 18 ensembles, we have also generated exotic effective geometries, including a Mobius ladder and a treelike graph inspired by quantum models for spacetime. This demonstrates the scalability of our approach to generating structured entangled states for quantum metrology.Combining programmable entanglement with interaction-based readout enables multiparameter estimation protocols. In particular, we show that a two mode squeezed state, involving entanglement between a sensor and an ancilla, can be used to simultaneously sense displacements in conjugate variables. This scheme circumvents the limit for local sensors set by the Heisenberg uncertainty principle. Interaction-based readout is key to this protocol, allowing non-destructive readout of the two squeezed modes without unnecessary quantum back-action.
Subject Added Entry-Topical Term  
Global positioning systems--GPS.
Subject Added Entry-Topical Term  
Interferometry.
Subject Added Entry-Topical Term  
Science education.
Subject Added Entry-Topical Term  
Clocks & watches.
Subject Added Entry-Topical Term  
Magnetic fields.
Subject Added Entry-Topical Term  
Pandemics.
Subject Added Entry-Topical Term  
Gravitational waves.
Subject Added Entry-Topical Term  
Energy.
Subject Added Entry-Topical Term  
Theory of relativity.
Subject Added Entry-Topical Term  
Reproducibility.
Subject Added Entry-Topical Term  
Atoms & subatomic particles.
Subject Added Entry-Topical Term  
Aerospace engineering.
Subject Added Entry-Topical Term  
Astrophysics.
Subject Added Entry-Topical Term  
Atomic physics.
Subject Added Entry-Topical Term  
Electromagnetics.
Subject Added Entry-Topical Term  
Epidemiology.
Subject Added Entry-Topical Term  
Optics.
Subject Added Entry-Topical Term  
Theoretical physics.
Added Entry-Corporate Name  
Stanford University.
Host Item Entry  
Dissertations Abstracts International. 86-05B.
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:656268

MARC

 008250224s2024        us  ||||||||||||||c||eng  d
■001000017164903
■00520250211153101
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798346390480
■035    ▼a(MiAaPQ)AAI31652069
■035    ▼a(MiAaPQ)Stanfordyx378yk5843
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a910.285
■1001  ▼aCooper,  Eric  Scott.
■24510▼aProgrammable  Entanglement  of  Atomic  Ensembles  for  Quantum  Metrology.
■260    ▼a[S.l.]▼bStanford  University.  ▼c2024
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2024
■300    ▼a126  p.
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  86-05,  Section:  B.
■500    ▼aAdvisor:  Schleier-Smith,  Monika.
■5021  ▼aThesis  (Ph.D.)--Stanford  University,  2024.
■520    ▼aState  of  the  art  atomic  sensors  typically  consist  of  many  atoms  working  in  parallel.  When  engineered  to  eliminate  technical  noise,  these  sensors  approach  the  standard  quantum  limit  set  by  the  quantum  projection  noise  of  independent  atoms.  Optical  cavities  enable  single-parameter  sensing  beyond  this  limit  by  efficiently  generating  all-to-all  entanglement.  However,  extending  quantum  advantage  to  tasks  like  imaging  or  sensor  networks  requires  additional  spatial  control  over  entanglement.  In  this  thesis,  we  combine  global  cavity-mediated  interactions  with  local  spin  rotations  to  generate  and  leverage  structured,  non-local  entanglement  for  multimode  quantum  metrology.In  our  system,  all-to-all  interactions  mediated  by  an  optical  cavity  produce  spin-nematic  squeezing.  This  form  of  squeezing,  which  leverages  the  spin-1  nature  of  the  ground  state  of  rubidium  atoms,  is  robust  against  sources  of  technical  noise  including  global  magnetic  field  drift.  These  robust  dynamics,  previously  demonstrated  with  collisional  interactions  in  spinor  condensates,  are  a  useful  tool  for  exploring  novel  metrology  protocols.  In  particular,  we  leverage  these  dynamics  in  echo-based  interferometry  sequences,  demonstrating  up  to  6  dB  of  metrological  gain  by  using  interactions  both  to  generate  entanglement  and  to  amplify  displacements  before  readout.By  interspersing  global  interactions  with  local  rotations,  we  can  either  localize  entanglement  to  within  subsystems  or  demonstrate  non-local  entanglement.  In  system  sizes  of  up  to  four  ensembles,  we  have  demonstrated  that  this  scheme  produces  continuous  variable  graph  states  with  provable  entanglement  structures  (specified  by  the  graph)  and  metrologically  useful  multimode  spin  squeezing.  By  using  a  magnetic  field  gradient  to  perform  local  rotations  among  up  to  18  ensembles,  we  have  also  generated  exotic  effective  geometries,  including  a  Mobius  ladder  and  a  treelike  graph  inspired  by  quantum  models  for  spacetime.  This  demonstrates  the  scalability  of  our  approach  to  generating  structured  entangled  states  for  quantum  metrology.Combining  programmable  entanglement  with  interaction-based  readout  enables  multiparameter  estimation  protocols.  In  particular,  we  show  that  a  two  mode  squeezed  state,  involving  entanglement  between  a  sensor  and  an  ancilla,  can  be  used  to  simultaneously  sense  displacements  in  conjugate  variables.  This  scheme  circumvents  the  limit  for  local  sensors  set  by  the  Heisenberg  uncertainty  principle.  Interaction-based  readout  is  key  to  this  protocol,  allowing  non-destructive  readout  of  the  two  squeezed  modes  without  unnecessary  quantum  back-action.
■590    ▼aSchool  code:  0212.
■650  4▼aGlobal  positioning  systems--GPS.
■650  4▼aInterferometry.
■650  4▼aScience  education.
■650  4▼aClocks  &  watches.
■650  4▼aMagnetic  fields.
■650  4▼aPandemics.
■650  4▼aGravitational  waves.
■650  4▼aEnergy.
■650  4▼aTheory  of  relativity.
■650  4▼aReproducibility.
■650  4▼aAtoms  &  subatomic  particles.
■650  4▼aAerospace  engineering.
■650  4▼aAstrophysics.
■650  4▼aAtomic  physics.
■650  4▼aElectromagnetics.
■650  4▼aEpidemiology.
■650  4▼aOptics.
■650  4▼aTheoretical  physics.
■690    ▼a0791
■690    ▼a0714
■690    ▼a0538
■690    ▼a0596
■690    ▼a0748
■690    ▼a0607
■690    ▼a0766
■690    ▼a0752
■690    ▼a0753
■71020▼aStanford  University.
■7730  ▼tDissertations  Abstracts  International▼g86-05B.
■790    ▼a0212
■791    ▼aPh.D.
■792    ▼a2024
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T17164903▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    Info Détail de la recherche.

    • Réservation
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • My Folder
    Matériel
    Reg No. Call No. emplacement Status Lend Info
    TQ0032303 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * Les réservations sont disponibles dans le livre d'emprunt. Pour faire des réservations, S'il vous plaît cliquer sur le bouton de réservation

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치