본문

서브메뉴

Dissecting an Integer Polymatroid.
Dissecting an Integer Polymatroid.

상세정보

자료유형  
 학위논문
Control Number  
0017162127
International Standard Book Number  
9798382842264
Dewey Decimal Classification Number  
510
Main Entry-Personal Name  
Young, Fiona.
Publication, Distribution, etc. (Imprint  
[S.l.] : Cornell University., 2024
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2024
Physical Description  
119 p.
General Note  
Source: Dissertations Abstracts International, Volume: 85-12, Section: B.
General Note  
Advisor: Swartz, Edward B.
Dissertation Note  
Thesis (Ph.D.)--Cornell University, 2024.
Summary, Etc.  
요약One way to define an integer polymatroid ρ is via its independent set polytope, whose faces are parallel translates of the independent set polytopes of the minors of ρ. To better understand the interior of this polytope, we endow a structure on this polytope which relates to the polymatroid operation of compression and the k-natural matroid of ρ. The latter can be intuited as follows: if we think of a polymatroid as a subspace arrangement, then to obtain its k-natural matroid, freely place k points on each subspace and then delete the original subspaces.For a given minor-closed, dual-closed class of matroids C, we can define another class: the class of k-polymatroids whose k-natural matroids are in C. This new class is (polymatroid) minor-closed as well as closed under a generalization of matroid duality known as k-duality. For the case k = 2, Bonin and Long determined the set of excluded minors for the class of k-polymatroids whose k-natural matroids are binary (i.e. lacking a U2,4-minor); they found an infinite sequence of excluded minors, along with eight other excluded minors that do not belong to this sequence. We extend their result to larger k and find that the set of excluded minors becomes finite for k ≥ 3. Next, we generalize this problem to the class of k-polymatroids whose k-natural matroids lack both U2,b- and Ub−2,b-minors. As b grows, the original method becomes increasingly unwieldy and that is where the polytopal perspective comes into play. We define a notion of boundedness for polymatroids and show that, under optimal conditions, the bounds on the singleton and doubleton minors of ρ completely determine the bound on ρ. This holds the key to showing that when k is sufficiently large, there are finitely many excluded minors for the class of k-polymatroids whose k-natural matroids lack both U2,b- and Ub−2,b-minors.Finally, we investigate a further generalization to the class of k-polymatroids whose k-natural matroids lack both Ua,b- and Ub−a,b-minors. Curiously, here we find many infinite sequences of excluded minors having a similar flavor to the infinite sequence found by Bonin and Long.
Subject Added Entry-Topical Term  
Mathematics.
Subject Added Entry-Topical Term  
Applied mathematics.
Index Term-Uncontrolled  
Combinatorics
Index Term-Uncontrolled  
Discrete geometry
Index Term-Uncontrolled  
Excluded minors
Index Term-Uncontrolled  
Generalized permutohedra
Index Term-Uncontrolled  
Matroid
Index Term-Uncontrolled  
Polymatroid
Added Entry-Corporate Name  
Cornell University Mathematics
Host Item Entry  
Dissertations Abstracts International. 85-12B.
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:656252

MARC

 008250224s2024        us  ||||||||||||||c||eng  d
■001000017162127
■00520250211151922
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798382842264
■035    ▼a(MiAaPQ)AAI31243352
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a510
■1001  ▼aYoung,  Fiona.▼0(orcid)0000-0001-7166-585X
■24510▼aDissecting  an  Integer  Polymatroid.
■260    ▼a[S.l.]▼bCornell  University.  ▼c2024
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2024
■300    ▼a119  p.
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  85-12,  Section:  B.
■500    ▼aAdvisor:  Swartz,  Edward  B.
■5021  ▼aThesis  (Ph.D.)--Cornell  University,  2024.
■520    ▼aOne  way  to  define  an  integer  polymatroid  ρ  is  via  its  independent  set  polytope,  whose  faces  are  parallel  translates  of  the  independent  set  polytopes  of  the  minors  of  ρ.  To  better  understand  the  interior  of  this  polytope,  we  endow  a  structure  on  this  polytope  which  relates  to  the  polymatroid  operation  of  compression  and  the  k-natural  matroid  of  ρ.  The  latter  can  be  intuited  as  follows:  if  we  think  of  a  polymatroid  as  a  subspace  arrangement,  then  to  obtain  its  k-natural  matroid,  freely  place  k  points  on  each  subspace  and  then  delete  the  original  subspaces.For  a  given  minor-closed,  dual-closed  class  of  matroids  C,  we  can  define  another  class:  the  class  of  k-polymatroids  whose  k-natural  matroids  are  in  C.  This  new  class  is  (polymatroid)  minor-closed  as  well  as  closed  under  a  generalization  of  matroid  duality  known  as  k-duality.  For  the  case  k  =  2,  Bonin  and  Long  determined  the  set  of  excluded  minors  for  the  class  of  k-polymatroids  whose  k-natural  matroids  are  binary  (i.e.  lacking  a  U2,4-minor);  they  found  an  infinite  sequence  of  excluded  minors,  along  with  eight  other  excluded  minors  that  do  not  belong  to  this  sequence.  We  extend  their  result  to  larger  k  and  find  that  the  set  of  excluded  minors  becomes  finite  for  k  ≥  3. Next,  we  generalize  this  problem  to  the  class  of  k-polymatroids  whose  k-natural  matroids  lack  both  U2,b-  and  Ub−2,b-minors.  As  b  grows,  the  original  method  becomes  increasingly  unwieldy  and  that  is  where  the  polytopal  perspective  comes  into  play.  We  define  a  notion  of  boundedness  for  polymatroids  and  show  that,  under  optimal  conditions,  the  bounds  on  the  singleton  and  doubleton  minors  of  ρ  completely  determine  the  bound  on  ρ.  This  holds  the  key  to  showing  that  when  k  is  sufficiently  large,  there  are  finitely  many  excluded  minors  for  the  class  of  k-polymatroids  whose  k-natural  matroids  lack  both  U2,b-  and  Ub−2,b-minors.Finally,  we  investigate  a  further  generalization  to  the  class  of  k-polymatroids  whose  k-natural  matroids  lack  both  Ua,b-  and  Ub−a,b-minors.  Curiously,  here  we  find  many  infinite  sequences  of  excluded  minors  having  a  similar  flavor  to  the  infinite  sequence  found  by  Bonin  and  Long.
■590    ▼aSchool  code:  0058.
■650  4▼aMathematics.
■650  4▼aApplied  mathematics.
■653    ▼aCombinatorics
■653    ▼aDiscrete  geometry
■653    ▼aExcluded  minors
■653    ▼aGeneralized  permutohedra
■653    ▼aMatroid
■653    ▼aPolymatroid
■690    ▼a0405
■690    ▼a0364
■71020▼aCornell  University▼bMathematics.
■7730  ▼tDissertations  Abstracts  International▼g85-12B.
■790    ▼a0058
■791    ▼aPh.D.
■792    ▼a2024
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T17162127▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    Info Détail de la recherche.

    • Réservation
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • My Folder
    Matériel
    Reg No. Call No. emplacement Status Lend Info
    TQ0032374 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * Les réservations sont disponibles dans le livre d'emprunt. Pour faire des réservations, S'il vous plaît cliquer sur le bouton de réservation

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치