본문

서브메뉴

Chiral Light-Matter Interaction in 2D Quantum Hall Systems.
Chiral Light-Matter Interaction in 2D Quantum Hall Systems.

상세정보

자료유형  
 학위논문
Control Number  
0017163262
International Standard Book Number  
9798384425762
Dewey Decimal Classification Number  
530
Main Entry-Personal Name  
Session, Deric.
Publication, Distribution, etc. (Imprint  
[S.l.] : University of Maryland, College Park., 2024
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2024
Physical Description  
137 p.
General Note  
Source: Dissertations Abstracts International, Volume: 86-03, Section: B.
General Note  
Advisor: Hafezi, Mohammad.
Dissertation Note  
Thesis (Ph.D.)--University of Maryland, College Park, 2024.
Summary, Etc.  
요약Achieving control over light-matter interactions is crucial for developing quantum technologies. This dissertation discusses two novel demonstrations where chiral light was used to control light-matter interaction in fermionic quantum Hall systems. In the first work, we demonstrated the transfer of orbital angular momentum from vortex light to itinerant electrons in quantum Hall graphene. In the latter, we demonstrated circular-polarization-dependent strong coupling in a 2D gas in the quantum Hall regime coupled to a microcavity. Our findings demonstrate the potential of chiral light to control light-matter interactions in quantum Hall systems.In the first part of this dissertation, we review our experimental demonstration of light-matter interaction beyond the dipole-approximation between electronic quantum Hall states and vortex light where the orbital angular momentum of light was transferred to electrons. Specifically, we identified a robust contribution to the radial photocurrent, in an annular graphene sample within the quantum Hall regime, that depends on the vorticity of light. This phenomenon can be interpreted as an optical pumping scheme, where the angular momentum of photons is transferred to electrons, generating a radial current, where the current direction is determined by the vorticity of the light. Our findings offer fundamental insights into the optical probing and manipulation of quantum coherence, with wide-ranging implications for advancing quantum coherent optoelectronics.In the second part of this dissertation, we review our experimental demonstration of a selective strong light-matter interaction by harnessing a 2D gas in the quantum Hall regime coupled to a microcavity. Specifically, we demonstrated circular-polarization dependence of the vacuum Rabi splitting, as a function of magnetic field and hole density. We provide a quantitative understanding of the phenomenon by modeling the coupling of optical transitions between Landau levels to the microcavity. This method introduces a control tool over the spin degree of freedom in polaritonic semiconductor systems, paving the way for new experimental possibilities in light-matter hybrids.
Subject Added Entry-Topical Term  
Physics.
Subject Added Entry-Topical Term  
Optics.
Subject Added Entry-Topical Term  
Condensed matter physics.
Subject Added Entry-Topical Term  
Quantum physics.
Index Term-Uncontrolled  
Orbital angular momentum
Index Term-Uncontrolled  
Light-matter interactions
Index Term-Uncontrolled  
Quantum Hall systems
Index Term-Uncontrolled  
Vortex light
Added Entry-Corporate Name  
University of Maryland, College Park Physics
Host Item Entry  
Dissertations Abstracts International. 86-03B.
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:656241

MARC

 008250224s2024        us  ||||||||||||||c||eng  d
■001000017163262
■00520250211152645
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798384425762
■035    ▼a(MiAaPQ)AAI31485809
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a530
■1001  ▼aSession,  Deric.
■24510▼aChiral  Light-Matter  Interaction  in  2D  Quantum  Hall  Systems.
■260    ▼a[S.l.]▼bUniversity  of  Maryland,  College  Park.  ▼c2024
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2024
■300    ▼a137  p.
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  86-03,  Section:  B.
■500    ▼aAdvisor:  Hafezi,  Mohammad.
■5021  ▼aThesis  (Ph.D.)--University  of  Maryland,  College  Park,  2024.
■520    ▼aAchieving  control  over  light-matter  interactions  is  crucial  for  developing  quantum  technologies.  This  dissertation  discusses  two  novel  demonstrations  where  chiral  light  was  used  to  control  light-matter  interaction  in  fermionic  quantum  Hall  systems.  In  the  first  work,  we  demonstrated  the  transfer  of  orbital  angular  momentum  from  vortex  light  to  itinerant  electrons  in  quantum  Hall  graphene.  In  the  latter,  we  demonstrated  circular-polarization-dependent  strong  coupling  in  a  2D  gas  in  the  quantum  Hall  regime  coupled  to  a  microcavity.  Our  findings  demonstrate  the  potential  of  chiral  light  to  control  light-matter  interactions  in  quantum  Hall  systems.In  the  first  part  of  this  dissertation,  we  review  our  experimental  demonstration  of  light-matter  interaction  beyond  the  dipole-approximation  between  electronic  quantum  Hall  states  and  vortex  light  where  the  orbital  angular  momentum  of  light  was  transferred  to  electrons.  Specifically,  we  identified  a  robust  contribution  to  the  radial  photocurrent,  in  an  annular  graphene  sample  within  the  quantum  Hall  regime,  that  depends  on  the  vorticity  of  light.  This  phenomenon  can  be  interpreted  as  an  optical  pumping  scheme,  where  the  angular  momentum  of  photons  is  transferred  to  electrons,  generating  a  radial  current,  where  the  current  direction  is  determined  by  the  vorticity  of  the  light.  Our  findings  offer  fundamental  insights  into  the  optical  probing  and  manipulation  of  quantum  coherence,  with  wide-ranging  implications  for  advancing  quantum  coherent  optoelectronics.In  the  second  part  of  this  dissertation,  we  review  our  experimental  demonstration  of  a  selective  strong  light-matter  interaction  by  harnessing  a  2D  gas  in  the  quantum  Hall  regime  coupled  to  a  microcavity.  Specifically,  we  demonstrated  circular-polarization  dependence  of  the  vacuum  Rabi  splitting,  as  a  function  of  magnetic  field  and  hole  density.  We  provide  a  quantitative  understanding  of  the  phenomenon  by  modeling  the  coupling  of  optical  transitions  between  Landau  levels  to  the  microcavity.  This  method  introduces  a  control  tool  over  the  spin  degree  of  freedom  in  polaritonic  semiconductor  systems,  paving  the  way  for  new  experimental  possibilities  in  light-matter  hybrids.
■590    ▼aSchool  code:  0117.
■650  4▼aPhysics.
■650  4▼aOptics.
■650  4▼aCondensed  matter  physics.
■650  4▼aQuantum  physics.
■653    ▼aOrbital  angular  momentum
■653    ▼aLight-matter  interactions
■653    ▼aQuantum  Hall  systems
■653    ▼aVortex  light
■690    ▼a0605
■690    ▼a0752
■690    ▼a0611
■690    ▼a0599
■71020▼aUniversity  of  Maryland,  College  Park▼bPhysics.
■7730  ▼tDissertations  Abstracts  International▼g86-03B.
■790    ▼a0117
■791    ▼aPh.D.
■792    ▼a2024
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T17163262▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    detalle info

    • Reserva
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • Mi carpeta
    Material
    número de libro número de llamada Ubicación estado Prestar info
    TQ0032363 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * Las reservas están disponibles en el libro de préstamos. Para hacer reservaciones, haga clic en el botón de reserva

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치