본문

서브메뉴

Harnessing Quantum Systems for Sensing, Simulation, and Optimization.
Harnessing Quantum Systems for Sensing, Simulation, and Optimization.

상세정보

자료유형  
 학위논문
Control Number  
0017162148
International Standard Book Number  
9798384423713
Dewey Decimal Classification Number  
530.1
Main Entry-Personal Name  
Bringewatt, Jacob Allen.
Publication, Distribution, etc. (Imprint  
[S.l.] : University of Maryland, College Park., 2024
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2024
Physical Description  
442 p.
General Note  
Source: Dissertations Abstracts International, Volume: 86-03, Section: B.
General Note  
Advisor: Gorshkov, Alexey V.;Davoudi, Zohreh.
Dissertation Note  
Thesis (Ph.D.)--University of Maryland, College Park, 2024.
Summary, Etc.  
요약Quantum information science offers a remarkable promise: by thinking practically about how quantum systems can be put to work to solve computational and information processing tasks, we gain novel insights into the foundations of quantum theory and computer science. Or, conversely, by (re)considering the fundamental physical building blocks of computers and sensors, we enable new technologies, with major impacts for computational and experimental physics.In this dissertation, we explore these ideas through the lens of three different types of quantum hardware, each with a particular application primarily in mind: (1) networks of quantum sensors for measuring global properties of local field(s); (2) analog quantum computers for solving combinatorial optimization problems; and (3) digital quantum computers for simulating lattice (gauge) theories.For the setting of quantum sensor networks, we derive the fundamental performance limits for the sensing task of measuring global properties of local field(s) in a variety of physical settings (qubit sensors, Mach-Zehnder interferometers, quadrature displacements) and present explicit protocols that achieve these limits. In the process, we reveal the geometric structure of the fundamental bounds and the associated algebraic structure of the corresponding protocols. We also find limits on the resources (e.g. entanglement or number of control operations) required by such protocols.For analog quantum computers, we focus on the possible origins of quantum advantage for solving combinatorial optimization problems with an emphasis on investigating the power of adiabatic quantum computation with so-called stoquastic Hamiltonians. Such Hamiltonians do not exhibit a sign problem when classically simulated via quantum Monte Carlo algorithms, suggesting deep connections between the sign problem, the locality of interactions, and the origins of quantum advantage. We explore these connections in detail.Finally, for digital quantum computers, we consider the optimization of two tasks relevant for simulating lattice (gauge) theories. First, we investigate how to map fermionic systems to qubit systems in a hardware-aware manner that consequently enables an improved parallelization of Trotter-based time evolution algorithms on the qubitized Hamiltonian. Second, we investigate how to take advantage of known symmetries in lattice gauge theories to construct more efficient randomized measurement protocols for extracting purities and entanglement entropies from simulated states. We demonstrate how these protocols can be used to detect a phase transition between a trivial and a topologically ordered phase in Z2 lattice gauge theory. Detecting this transition via these randomized methods would not otherwise be possible without relearning all symmetries.
Subject Added Entry-Topical Term  
Quantum physics.
Subject Added Entry-Topical Term  
Computer science.
Subject Added Entry-Topical Term  
Theoretical physics.
Subject Added Entry-Topical Term  
Computational physics.
Index Term-Uncontrolled  
Quantum algorithms
Index Term-Uncontrolled  
Quantum computation
Index Term-Uncontrolled  
Quantum information science
Index Term-Uncontrolled  
Optimization
Index Term-Uncontrolled  
Quantum theory
Added Entry-Corporate Name  
University of Maryland, College Park Physics
Host Item Entry  
Dissertations Abstracts International. 86-03B.
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:656152

MARC

 008250224s2024        us  ||||||||||||||c||eng  d
■001000017162148
■00520250211151938
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798384423713
■035    ▼a(MiAaPQ)AAI31301810
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a530.1
■1001  ▼aBringewatt,  Jacob  Allen.▼0(orcid)0000-0003-3235-3444
■24510▼aHarnessing  Quantum  Systems  for  Sensing,  Simulation,  and  Optimization.
■260    ▼a[S.l.]▼bUniversity  of  Maryland,  College  Park.  ▼c2024
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2024
■300    ▼a442  p.
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  86-03,  Section:  B.
■500    ▼aAdvisor:  Gorshkov,  Alexey  V.;Davoudi,  Zohreh.
■5021  ▼aThesis  (Ph.D.)--University  of  Maryland,  College  Park,  2024.
■520    ▼aQuantum  information  science  offers  a  remarkable  promise:  by  thinking  practically  about  how  quantum  systems  can  be  put  to  work  to  solve  computational  and  information  processing  tasks,  we  gain  novel  insights  into  the  foundations  of  quantum  theory  and  computer  science.  Or,  conversely,  by  (re)considering  the  fundamental  physical  building  blocks  of  computers  and  sensors,  we  enable  new  technologies,  with  major  impacts  for  computational  and  experimental  physics.In  this  dissertation,  we  explore  these  ideas  through  the  lens  of  three  different  types  of  quantum  hardware,  each  with  a  particular  application  primarily  in  mind:  (1)  networks  of  quantum  sensors  for  measuring  global  properties  of  local  field(s);  (2)  analog  quantum  computers  for  solving  combinatorial  optimization  problems;  and  (3)  digital  quantum  computers  for  simulating  lattice  (gauge)  theories.For  the  setting  of  quantum  sensor  networks,  we  derive  the  fundamental  performance  limits  for  the  sensing  task  of  measuring  global  properties  of  local  field(s)  in  a  variety  of  physical  settings  (qubit  sensors,  Mach-Zehnder  interferometers,  quadrature  displacements)  and  present  explicit  protocols  that  achieve  these  limits.  In  the  process,  we  reveal  the  geometric  structure  of  the  fundamental  bounds  and  the  associated  algebraic  structure  of  the  corresponding  protocols.  We  also  find  limits  on  the  resources  (e.g.  entanglement  or  number  of  control  operations)  required  by  such  protocols.For  analog  quantum  computers,  we  focus  on  the  possible  origins  of  quantum  advantage  for  solving  combinatorial  optimization  problems  with  an  emphasis  on  investigating  the  power  of  adiabatic  quantum  computation  with  so-called  stoquastic  Hamiltonians.  Such  Hamiltonians  do  not  exhibit  a  sign  problem  when  classically  simulated  via  quantum  Monte  Carlo  algorithms,  suggesting  deep  connections  between  the  sign  problem,  the  locality  of  interactions,  and  the  origins  of  quantum  advantage.  We  explore  these  connections  in  detail.Finally,  for  digital  quantum  computers,  we  consider  the  optimization  of  two  tasks  relevant  for  simulating  lattice  (gauge)  theories.  First,  we  investigate  how  to  map  fermionic  systems  to  qubit  systems  in  a  hardware-aware  manner  that  consequently  enables  an  improved  parallelization  of  Trotter-based  time  evolution  algorithms  on  the  qubitized  Hamiltonian.  Second,  we  investigate  how  to  take  advantage  of  known  symmetries  in  lattice  gauge  theories  to  construct  more  efficient  randomized  measurement  protocols  for  extracting  purities  and  entanglement  entropies  from  simulated  states.  We  demonstrate  how  these  protocols  can  be  used  to  detect  a  phase  transition  between  a  trivial  and  a  topologically  ordered  phase  in  Z2  lattice  gauge  theory.  Detecting  this  transition  via  these  randomized  methods  would  not  otherwise  be  possible  without  relearning  all  symmetries.
■590    ▼aSchool  code:  0117.
■650  4▼aQuantum  physics.
■650  4▼aComputer  science.
■650  4▼aTheoretical  physics.
■650  4▼aComputational  physics.
■653    ▼aQuantum  algorithms
■653    ▼aQuantum  computation
■653    ▼aQuantum  information  science
■653    ▼aOptimization
■653    ▼aQuantum  theory
■690    ▼a0599
■690    ▼a0984
■690    ▼a0753
■690    ▼a0216
■71020▼aUniversity  of  Maryland,  College  Park▼bPhysics.
■7730  ▼tDissertations  Abstracts  International▼g86-03B.
■790    ▼a0117
■791    ▼aPh.D.
■792    ▼a2024
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T17162148▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    Buch Status

    • Reservierung
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • Meine Mappe
    Sammlungen
    Registrierungsnummer callnumber Standort Verkehr Status Verkehr Info
    TQ0032271 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * Kredite nur für Ihre Daten gebucht werden. Wenn Sie buchen möchten Reservierungen, klicken Sie auf den Button.

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치