본문

서브메뉴

Viscoelasticity and Biomedical Applications of Dynamic Covalent Crosslinked Hydrogels.
Viscoelasticity and Biomedical Applications of Dynamic Covalent Crosslinked Hydrogels.

상세정보

자료유형  
 학위논문
Control Number  
0017164830
International Standard Book Number  
9798346381563
Dewey Decimal Classification Number  
612
Main Entry-Personal Name  
Lin, Yung-Hao.
Publication, Distribution, etc. (Imprint  
[S.l.] : Stanford University., 2024
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2024
Physical Description  
191 p.
General Note  
Source: Dissertations Abstracts International, Volume: 86-05, Section: B.
General Note  
Advisor: Chaudhuri, Ovijit;Dunn, Alexander R.
Dissertation Note  
Thesis (Ph.D.)--Stanford University, 2024.
Summary, Etc.  
요약Hydrogels have emerged as a powerful vehicle for drug delivery and cell delivery to promote tissue regeneration. Recently, there has been a focus in mimicking the viscoelasticity of tissues in the hydrogels to optimize their performance. Among these, dynamic covalent crosslinked (DCC) hydrogels are notable for their viscoelastic and injectable nature, making them ideal for both therapeutic and cell delivery applications.First, we discuss the impacts of an often-overlooked parameter-crosslinker architecture-on the mechanics of DCC hydrogels. Results unveil the distinct ranges of tunable stiffness and viscoelasticity based on crosslinker architectures. This provides insight into optimal matrix mechanical properties for 3D culture of chondrocytes for engineered cartilage, where fast stress relaxation and intermediate matrix degradation are potentially preferred.Next, we present the application of DCC hydrogels in bacteriophage (phages) delivery to combat life-threatening infections caused by nosocomial pathogens, particularly Pseudomonas aeruginosa (Pa). Hydrogel systems capable of sustained delivery of high-titer phages were developed, demonstrating superior bacterial burden reduction in a novel in vivo chronic wound infection model, compared to systemic phage treatment.Finally, we examine how the cancer cells generate forces to divide in viscoelastic hydrogels. Single cancer cells were found to generate substantial pushing forces to drive cell division in confining collagen gels, and neither cell spreading nor matrix degradation are found to be required for mitotic elongation. These results provide insights into how tumor cells proliferate in dense, collagen-rich tissues.Overall, this work highlights the translational potential of viscoelastic hydrogels in both regenerative medicine and therapeutics delivery, demonstrating the versatility of this class of biomaterials.
Subject Added Entry-Topical Term  
Physiology.
Subject Added Entry-Topical Term  
Infections.
Subject Added Entry-Topical Term  
Mechanical properties.
Subject Added Entry-Topical Term  
Pathogens.
Subject Added Entry-Topical Term  
Extracellular matrix.
Subject Added Entry-Topical Term  
Biomedical materials.
Subject Added Entry-Topical Term  
Cell cycle.
Subject Added Entry-Topical Term  
Cell culture.
Subject Added Entry-Topical Term  
Drug dosages.
Subject Added Entry-Topical Term  
Polymers.
Subject Added Entry-Topical Term  
Hyaluronic acid.
Subject Added Entry-Topical Term  
Collagen.
Subject Added Entry-Topical Term  
Rheology.
Subject Added Entry-Topical Term  
Cell adhesion & migration.
Subject Added Entry-Topical Term  
Regenerative medicine.
Subject Added Entry-Topical Term  
Tissues.
Subject Added Entry-Topical Term  
Viscoelasticity.
Subject Added Entry-Topical Term  
Stem cells.
Subject Added Entry-Topical Term  
Polyethylene glycol.
Subject Added Entry-Topical Term  
Chemical engineering.
Subject Added Entry-Topical Term  
Hydrogels.
Subject Added Entry-Topical Term  
Cell division.
Subject Added Entry-Topical Term  
Biomedical engineering.
Subject Added Entry-Topical Term  
Cellular biology.
Subject Added Entry-Topical Term  
Developmental biology.
Subject Added Entry-Topical Term  
Materials science.
Subject Added Entry-Topical Term  
Mechanics.
Subject Added Entry-Topical Term  
Medicine.
Subject Added Entry-Topical Term  
Pharmaceutical sciences.
Subject Added Entry-Topical Term  
Plastics.
Subject Added Entry-Topical Term  
Polymer chemistry.
Subject Added Entry-Topical Term  
Physics.
Added Entry-Corporate Name  
Stanford University.
Host Item Entry  
Dissertations Abstracts International. 86-05B.
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:656014

MARC

 008250224s2024        us  ||||||||||||||c||eng  d
■001000017164830
■00520250211153052
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798346381563
■035    ▼a(MiAaPQ)AAI31643346
■035    ▼a(MiAaPQ)Stanfordmj853tr9184
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a612
■1001  ▼aLin,  Yung-Hao.
■24510▼aViscoelasticity  and  Biomedical  Applications  of  Dynamic  Covalent  Crosslinked  Hydrogels.
■260    ▼a[S.l.]▼bStanford  University.  ▼c2024
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2024
■300    ▼a191  p.
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  86-05,  Section:  B.
■500    ▼aAdvisor:  Chaudhuri,  Ovijit;Dunn,  Alexander  R.
■5021  ▼aThesis  (Ph.D.)--Stanford  University,  2024.
■520    ▼aHydrogels  have  emerged  as  a  powerful  vehicle  for  drug  delivery  and  cell  delivery  to  promote  tissue  regeneration.  Recently,  there  has  been  a  focus  in  mimicking  the  viscoelasticity  of  tissues  in  the  hydrogels  to  optimize  their  performance.  Among  these,  dynamic  covalent  crosslinked  (DCC)  hydrogels  are  notable  for  their  viscoelastic  and  injectable  nature,  making  them  ideal  for  both  therapeutic  and  cell  delivery  applications.First,  we  discuss  the  impacts  of  an  often-overlooked  parameter-crosslinker  architecture-on  the  mechanics  of  DCC  hydrogels.  Results  unveil  the  distinct  ranges  of  tunable  stiffness  and  viscoelasticity  based  on  crosslinker  architectures.  This  provides  insight  into  optimal  matrix  mechanical  properties  for  3D  culture  of  chondrocytes  for  engineered  cartilage,  where  fast  stress  relaxation  and  intermediate  matrix  degradation  are  potentially  preferred.Next,  we  present  the  application  of  DCC  hydrogels  in  bacteriophage  (phages)  delivery  to  combat  life-threatening  infections  caused  by  nosocomial  pathogens,  particularly  Pseudomonas  aeruginosa  (Pa).  Hydrogel  systems  capable  of  sustained  delivery  of  high-titer  phages  were  developed,  demonstrating  superior  bacterial  burden  reduction  in  a  novel  in  vivo  chronic  wound  infection  model,  compared  to  systemic  phage  treatment.Finally,  we  examine  how  the  cancer  cells  generate  forces  to  divide  in  viscoelastic  hydrogels.  Single  cancer  cells  were  found  to  generate  substantial  pushing  forces  to  drive  cell  division  in  confining  collagen  gels,  and  neither  cell  spreading  nor  matrix  degradation  are  found  to  be  required  for  mitotic  elongation.  These  results  provide  insights  into  how  tumor  cells  proliferate  in  dense,  collagen-rich  tissues.Overall,  this  work  highlights  the  translational  potential  of  viscoelastic  hydrogels  in  both  regenerative  medicine  and  therapeutics  delivery,  demonstrating  the  versatility  of  this  class  of  biomaterials.
■590    ▼aSchool  code:  0212.
■650  4▼aPhysiology.
■650  4▼aInfections.
■650  4▼aMechanical  properties.
■650  4▼aPathogens.
■650  4▼aExtracellular  matrix.
■650  4▼aBiomedical  materials.
■650  4▼aCell  cycle.
■650  4▼aCell  culture.
■650  4▼aDrug  dosages.
■650  4▼aPolymers.
■650  4▼aHyaluronic  acid.
■650  4▼aCollagen.
■650  4▼aRheology.
■650  4▼aCell  adhesion  &  migration.
■650  4▼aRegenerative  medicine.
■650  4▼aTissues.
■650  4▼aViscoelasticity.
■650  4▼aStem  cells.
■650  4▼aPolyethylene  glycol.
■650  4▼aChemical  engineering.
■650  4▼aHydrogels.
■650  4▼aCell  division.
■650  4▼aBiomedical  engineering.
■650  4▼aCellular  biology.
■650  4▼aDevelopmental  biology.
■650  4▼aMaterials  science.
■650  4▼aMechanics.
■650  4▼aMedicine.
■650  4▼aPharmaceutical  sciences.
■650  4▼aPlastics.
■650  4▼aPolymer  chemistry.
■650  4▼aPhysics.
■690    ▼a0542
■690    ▼a0719
■690    ▼a0541
■690    ▼a0379
■690    ▼a0758
■690    ▼a0794
■690    ▼a0346
■690    ▼a0564
■690    ▼a0572
■690    ▼a0795
■690    ▼a0495
■690    ▼a0605
■71020▼aStanford  University.
■7730  ▼tDissertations  Abstracts  International▼g86-05B.
■790    ▼a0212
■791    ▼aPh.D.
■792    ▼a2024
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T17164830▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    詳細情報

    • 予約
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • 私のフォルダ
    資料
    登録番号 請求記号 場所 ステータス 情報を貸す
    TQ0032136 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    *ご予約は、借入帳でご利用いただけます。予約をするには、予約ボタンをクリックしてください

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치