본문

서브메뉴

Pushing the Limit of Power Density in Devices with Ultra-Wide Bandgap (All-AlGaN) Heterostructures.
Pushing the Limit of Power Density in Devices with Ultra-Wide Bandgap (All-AlGaN) Heterostructures.

상세정보

자료유형  
 학위논문
Control Number  
0017164893
International Standard Book Number  
9798346380771
Dewey Decimal Classification Number  
620
Main Entry-Personal Name  
Noshin, Maliha.
Publication, Distribution, etc. (Imprint  
[S.l.] : Stanford University., 2024
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2024
Physical Description  
112 p.
General Note  
Source: Dissertations Abstracts International, Volume: 86-05, Section: A.
General Note  
Advisor: Chowdhury, Srabanti.
Dissertation Note  
Thesis (Ph.D.)--Stanford University, 2024.
Summary, Etc.  
요약The increasing energy-consumption due to increased electrification of our society is pushing the limit of today's power-electronics systems. To address this challenge, the development of higher energy-density power-electronic devices and systems will be a key enabler of energy technologies for future grid-electronics and data centers. To this end, ultrawide-bandgap (UWBG) semiconducting materials-like aluminum gallium nitride (AlGaN) are emerging as promising candidates for high-power electronics, beyond the limitations of conventional materials like silicon.In this thesis, I will present the first demonstration of nitrogen (N)-polar AlGaN (Al = 20% to 73%) heterostructure based high-electron mobility transistors. First, I will discuss the compositional design space and metal organic chemical vapor deposition (MOCVD)-growth of such heterostructures to realize a tunable and large bandgap, followed by the materials characterization. I will simultaneously explain how the alloy-dominated scattering of charge carriers in such material system can control its two-dimensional electron gas mobility. Leveraging these fundamental understanding, I will demonstrate the realization of the first N-polar AlGaN-channel high electron mobility transistors, achieving simultaneously large drive current, low contact resistance, low leakage current and large breakdown voltage. Finally, I will illustrate the interface-driven thermal and electrical transport and their temperature dependence in such heterostructures, offering important insights into material-device codesign, electronic device functionality and reliability. This work demonstrates the outstanding potential of AlGaN-based heterostructures for high-power density electronic devices and systems.
Subject Added Entry-Topical Term  
Silicon.
Subject Added Entry-Topical Term  
Electrons.
Subject Added Entry-Topical Term  
Optimization techniques.
Subject Added Entry-Topical Term  
Electric fields.
Subject Added Entry-Topical Term  
Electric vehicles.
Subject Added Entry-Topical Term  
Signal processing.
Subject Added Entry-Topical Term  
Microscopy.
Subject Added Entry-Topical Term  
Etching.
Subject Added Entry-Topical Term  
Aluminum.
Subject Added Entry-Topical Term  
Transistors.
Subject Added Entry-Topical Term  
Heat conductivity.
Subject Added Entry-Topical Term  
Nitrogen.
Subject Added Entry-Topical Term  
Atomic physics.
Subject Added Entry-Topical Term  
Electrical engineering.
Subject Added Entry-Topical Term  
Electromagnetics.
Subject Added Entry-Topical Term  
Thermodynamics.
Subject Added Entry-Topical Term  
Transportation.
Added Entry-Corporate Name  
Stanford University.
Host Item Entry  
Dissertations Abstracts International. 86-05A.
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:655947

MARC

 008250224s2024        us  ||||||||||||||c||eng  d
■001000017164893
■00520250211153059
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798346380771
■035    ▼a(MiAaPQ)AAI31652058
■035    ▼a(MiAaPQ)Stanfordry886hk9765
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a620
■1001  ▼aNoshin,  Maliha.
■24510▼aPushing  the  Limit  of  Power  Density  in  Devices  with  Ultra-Wide  Bandgap  (All-AlGaN)  Heterostructures.
■260    ▼a[S.l.]▼bStanford  University.  ▼c2024
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2024
■300    ▼a112  p.
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  86-05,  Section:  A.
■500    ▼aAdvisor:  Chowdhury,  Srabanti.
■5021  ▼aThesis  (Ph.D.)--Stanford  University,  2024.
■520    ▼aThe  increasing  energy-consumption  due  to  increased  electrification  of  our  society  is  pushing  the  limit  of  today's  power-electronics  systems.  To  address  this  challenge,  the  development  of  higher  energy-density  power-electronic  devices  and  systems  will  be  a  key  enabler  of  energy  technologies  for  future  grid-electronics  and  data  centers.  To  this  end,  ultrawide-bandgap  (UWBG)  semiconducting  materials-like  aluminum  gallium  nitride  (AlGaN)  are  emerging  as  promising  candidates  for  high-power  electronics,  beyond  the  limitations  of  conventional  materials  like  silicon.In  this  thesis,  I  will  present  the  first  demonstration  of  nitrogen  (N)-polar  AlGaN  (Al  =  20%  to  73%)  heterostructure  based  high-electron  mobility  transistors.  First,  I  will  discuss  the  compositional  design  space  and  metal  organic  chemical  vapor  deposition  (MOCVD)-growth  of  such  heterostructures  to  realize  a  tunable  and  large  bandgap,  followed  by  the  materials  characterization.  I  will  simultaneously  explain  how  the  alloy-dominated  scattering  of  charge  carriers  in  such  material  system  can  control  its  two-dimensional  electron  gas  mobility.  Leveraging  these  fundamental  understanding,  I  will  demonstrate  the  realization  of  the  first  N-polar  AlGaN-channel  high  electron  mobility  transistors,  achieving  simultaneously  large  drive  current,  low  contact  resistance,  low  leakage  current  and  large  breakdown  voltage.  Finally,  I  will  illustrate  the  interface-driven  thermal  and  electrical  transport  and  their  temperature  dependence  in  such  heterostructures,  offering  important  insights  into  material-device  codesign,  electronic  device  functionality  and  reliability.  This  work  demonstrates  the  outstanding  potential  of  AlGaN-based  heterostructures  for  high-power  density  electronic  devices  and  systems.
■590    ▼aSchool  code:  0212.
■650  4▼aSilicon.
■650  4▼aElectrons.
■650  4▼aOptimization  techniques.
■650  4▼aElectric  fields.
■650  4▼aElectric  vehicles.
■650  4▼aSignal  processing.
■650  4▼aMicroscopy.
■650  4▼aEtching.
■650  4▼aAluminum.
■650  4▼aTransistors.
■650  4▼aHeat  conductivity.
■650  4▼aNitrogen.
■650  4▼aAtomic  physics.
■650  4▼aElectrical  engineering.
■650  4▼aElectromagnetics.
■650  4▼aThermodynamics.
■650  4▼aTransportation.
■690    ▼a0800
■690    ▼a0748
■690    ▼a0544
■690    ▼a0607
■690    ▼a0348
■690    ▼a0709
■71020▼aStanford  University.
■7730  ▼tDissertations  Abstracts  International▼g86-05A.
■790    ▼a0212
■791    ▼aPh.D.
■792    ▼a2024
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T17164893▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    Info Détail de la recherche.

    • Réservation
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • My Folder
    Matériel
    Reg No. Call No. emplacement Status Lend Info
    TQ0031969 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * Les réservations sont disponibles dans le livre d'emprunt. Pour faire des réservations, S'il vous plaît cliquer sur le bouton de réservation

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치