본문

서브메뉴

Analyzing Disease Heterogeneity via Weakly-Supervised Deep Learning.
Analyzing Disease Heterogeneity via Weakly-Supervised Deep Learning.

상세정보

자료유형  
 학위논문
Control Number  
0017161137
International Standard Book Number  
9798382830476
Dewey Decimal Classification Number  
610
Main Entry-Personal Name  
Yang, Zhijian.
Publication, Distribution, etc. (Imprint  
[S.l.] : University of Pennsylvania., 2024
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2024
Physical Description  
143 p.
General Note  
Source: Dissertations Abstracts International, Volume: 85-12, Section: B.
General Note  
Advisor: Davatzikos, Christos.
Dissertation Note  
Thesis (Ph.D.)--University of Pennsylvania, 2024.
Summary, Etc.  
요약Heterogeneity of brain diseases poses significant challenges for precision medicine. While a plethora of machine learning methods have been applied to imaging data, enabling the construction of clinically relevant imaging signatures for neurological and neuropsychiatric diseases, they often overlook explicit modeling of disease heterogeneity. Moreover, unsupervised methods may inadvertently capture heterogeneity driven by nuisance confounding factors that affect brain structure or function, rather than heterogeneity relevant to the pathology or condition of interest.In this thesis, we have proposed a series of weakly-supervised deep learning approaches that utilize normal control data as reference, specifically characterizing disease effects on brain changes through deep generative modeling. Following this principle, we first proposed, Smile-GAN, a clustering method that estimates dominant subtypes and categorizes patients' imaging data according to disease-related imaging patterns. Second, built upon the foundation established by Smile-GAN, we introduced an improved representation learning approach, Surreal-GAN, which not only captures disease effects, but further disentangles spatial and temporal variations in brain changes, producing concise representation indices directly indicating the severity of different brain change patterns. While Smile-GAN and Surreal-GAN focus solely on capturing disease heterogeneity from neuroimaging data, they may overlook valuable information from other modalities, such as genetics. Therefore, we further developed the multi-view method Gene-SGAN. By effectively distilling information from both imaging and genetic data, Gene-SGAN separates brain changes with and without genetic associations through multi-modal learning, thereby deriving disease endophenotypes closer to the underlying biology.All three methods were first extensively validated through synthetic experiments with known simulated ground truth. More importantly, their applications to different cohorts of real participants' data enhanced our understanding of heterogeneous brain changes related to Alzheimer's disease and the general brain aging process. The derived clusters or indices of these methods demonstrate significant associations with distinct biomedical, lifestyle, and genetic factors, providing insights into the etiology of observed variances. Moreover, they show predictive value for future neurodegeneration, disease progression, and mortality. Consequently, these methods hold promise for more personalized patient management and more optimal clinical trial design.
Subject Added Entry-Topical Term  
Biomedical engineering.
Subject Added Entry-Topical Term  
Computer science.
Subject Added Entry-Topical Term  
Bioinformatics.
Subject Added Entry-Topical Term  
Medical imaging.
Index Term-Uncontrolled  
Heterogeneity
Index Term-Uncontrolled  
Weakly-supervised deep learning
Index Term-Uncontrolled  
Brain changes
Index Term-Uncontrolled  
Mild Cognitive Impairment
Index Term-Uncontrolled  
Brain aging process
Added Entry-Corporate Name  
University of Pennsylvania Applied Mathematics and Computational Science
Host Item Entry  
Dissertations Abstracts International. 85-12B.
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:655735

MARC

 008250224s2024        us  ||||||||||||||c||eng  d
■001000017161137
■00520250211151315
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798382830476
■035    ▼a(MiAaPQ)AAI31238186
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a610
■1001  ▼aYang,  Zhijian.
■24510▼aAnalyzing  Disease  Heterogeneity  via  Weakly-Supervised  Deep  Learning.
■260    ▼a[S.l.]▼bUniversity  of  Pennsylvania.  ▼c2024
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2024
■300    ▼a143  p.
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  85-12,  Section:  B.
■500    ▼aAdvisor:  Davatzikos,  Christos.
■5021  ▼aThesis  (Ph.D.)--University  of  Pennsylvania,  2024.
■520    ▼aHeterogeneity  of  brain  diseases  poses  significant  challenges  for  precision  medicine.  While  a  plethora  of  machine  learning  methods  have  been  applied  to  imaging  data,  enabling  the  construction  of  clinically  relevant  imaging  signatures  for  neurological  and  neuropsychiatric  diseases,  they  often  overlook  explicit  modeling  of  disease  heterogeneity.  Moreover,  unsupervised  methods  may  inadvertently  capture  heterogeneity  driven  by  nuisance  confounding  factors  that  affect  brain  structure  or  function,  rather  than  heterogeneity  relevant  to  the  pathology  or  condition  of  interest.In  this  thesis,  we  have  proposed  a  series  of  weakly-supervised  deep  learning  approaches  that  utilize  normal  control  data  as  reference,  specifically  characterizing  disease  effects  on  brain  changes  through  deep  generative  modeling.  Following  this  principle,  we  first  proposed,  Smile-GAN,  a  clustering  method  that  estimates  dominant  subtypes  and  categorizes  patients'  imaging  data  according  to  disease-related  imaging  patterns.  Second,  built  upon  the  foundation  established  by  Smile-GAN,  we  introduced  an  improved  representation  learning  approach,  Surreal-GAN,  which  not  only  captures  disease  effects,  but  further  disentangles  spatial  and  temporal  variations  in  brain  changes,  producing  concise  representation  indices  directly  indicating  the  severity  of  different  brain  change  patterns.  While  Smile-GAN  and  Surreal-GAN  focus  solely  on  capturing  disease  heterogeneity  from  neuroimaging  data,  they  may  overlook  valuable  information  from  other  modalities,  such  as  genetics.  Therefore,  we  further  developed  the  multi-view  method  Gene-SGAN.  By  effectively  distilling  information  from  both  imaging  and  genetic  data,  Gene-SGAN  separates  brain  changes  with  and  without  genetic  associations  through  multi-modal  learning,  thereby  deriving  disease  endophenotypes  closer  to  the  underlying  biology.All  three  methods  were  first  extensively  validated  through  synthetic  experiments  with  known  simulated  ground  truth.  More  importantly,  their  applications  to  different  cohorts  of  real  participants'  data  enhanced  our  understanding  of  heterogeneous  brain  changes  related  to  Alzheimer's  disease  and  the  general  brain  aging  process.  The  derived  clusters  or  indices  of  these  methods  demonstrate  significant  associations  with  distinct  biomedical,  lifestyle,  and  genetic  factors,  providing  insights  into  the  etiology  of  observed  variances.  Moreover,  they  show  predictive  value  for  future  neurodegeneration,  disease  progression,  and  mortality.  Consequently,  these  methods  hold  promise  for  more  personalized  patient  management  and  more  optimal  clinical  trial  design.
■590    ▼aSchool  code:  0175.
■650  4▼aBiomedical  engineering.
■650  4▼aComputer  science.
■650  4▼aBioinformatics.
■650  4▼aMedical  imaging.
■653    ▼aHeterogeneity
■653    ▼aWeakly-supervised  deep  learning
■653    ▼aBrain  changes
■653    ▼aMild  Cognitive  Impairment
■653    ▼aBrain  aging  process
■690    ▼a0800
■690    ▼a0541
■690    ▼a0984
■690    ▼a0574
■690    ▼a0715
■71020▼aUniversity  of  Pennsylvania▼bApplied  Mathematics  and  Computational  Science.
■7730  ▼tDissertations  Abstracts  International▼g85-12B.
■790    ▼a0175
■791    ▼aPh.D.
■792    ▼a2024
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T17161137▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    詳細情報

    • 予約
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • 私のフォルダ
    資料
    登録番号 請求記号 場所 ステータス 情報を貸す
    TQ0031757 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    *ご予約は、借入帳でご利用いただけます。予約をするには、予約ボタンをクリックしてください

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치