본문

서브메뉴

Towards Trustworthy Machine Learning: An Integer Programming Approach.
Towards Trustworthy Machine Learning: An Integer Programming Approach.

상세정보

자료유형  
 학위논문
Control Number  
0017161146
International Standard Book Number  
9798382841786
Dewey Decimal Classification Number  
621.3
Main Entry-Personal Name  
Lawless, Connor Aram.
Publication, Distribution, etc. (Imprint  
[S.l.] : Cornell University., 2024
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2024
Physical Description  
288 p.
General Note  
Source: Dissertations Abstracts International, Volume: 85-12, Section: B.
General Note  
Advisor: Gunluk, Oktay.
Dissertation Note  
Thesis (Ph.D.)--Cornell University, 2024.
Summary, Etc.  
요약Despite the proliferation of machine learning (ML) in a multitude of applications, current black-box models, such as deep learning, remain hard to understand, critique, and judge by decision makers. This in turn limits their adoption in high-stakes environments (e.g., credit lending, college admissions, medicine) where ML is often used as a tool to support a human decision maker. Moreover in applications where decisions have a significant societal impact, practitioners need ML models that can guarantee that their output is fair to sensitive demographic groups, a challenging constraint to integrate into existing algorithms. Integer Programming (IP) is a natural tool for these problems as many simple interpretable ML models can be represented by low-complexity discrete objects, and it allows for the flexible incorporation of domain-specific constraints such as fairness criteria. However, despite its success in numerous industrial applications, such as scheduling and logistics, exact IP methods are considered to be too computationally demanding to be used in many ML applications and are eschewed for fast heuristics. This thesis endeavors to bridge this gap between exact optimization and fast heuristics by leveraging large-scale integer programming techniques to build scalable algorithms that can outperform existing ML heuristics in a fraction of the time of exact IP-based methods. In particular, this thesis develops novel formulations for ML problems built upon strong combinatorial structure that can flexibly incorporate domain-specific constraints such as fairness. Underpinning these formulations are large-scale optimization procedures that are informed by exact optimization methods but leverage heuristics tailored for ML settings that allow them to scale to large data sets. Finally, towards democratizing these IP-based machine learning tools, this thesis explores how to leverage Large Language Models to enable non-expert users to interact and customize mathematical optimization models.
Subject Added Entry-Topical Term  
Computer engineering.
Index Term-Uncontrolled  
Clustering
Index Term-Uncontrolled  
Fairness
Index Term-Uncontrolled  
Integer Programming
Index Term-Uncontrolled  
Machine learning
Added Entry-Corporate Name  
Cornell University Operations Research and Information Engineering
Host Item Entry  
Dissertations Abstracts International. 85-12B.
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:655732

MARC

 008250224s2024        us  ||||||||||||||c||eng  d
■001000017161146
■00520250211151316
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798382841786
■035    ▼a(MiAaPQ)AAI31238501
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a621.3
■1001  ▼aLawless,  Connor  Aram.▼0(orcid)0000-0002-2112-2213
■24510▼aTowards  Trustworthy  Machine  Learning:  An  Integer  Programming  Approach.
■260    ▼a[S.l.]▼bCornell  University.  ▼c2024
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2024
■300    ▼a288  p.
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  85-12,  Section:  B.
■500    ▼aAdvisor:  Gunluk,  Oktay.
■5021  ▼aThesis  (Ph.D.)--Cornell  University,  2024.
■520    ▼aDespite  the  proliferation  of  machine  learning  (ML)  in  a  multitude  of  applications,  current  black-box  models,  such  as  deep  learning,  remain  hard  to  understand,  critique,  and  judge  by  decision  makers.  This  in  turn  limits  their  adoption  in  high-stakes  environments  (e.g.,  credit  lending,  college  admissions,  medicine)  where  ML  is  often  used  as  a  tool  to  support  a  human  decision  maker.  Moreover  in  applications  where  decisions  have  a  significant  societal  impact,  practitioners  need  ML  models  that  can  guarantee  that  their  output  is  fair  to  sensitive  demographic  groups,  a  challenging  constraint  to  integrate  into  existing  algorithms.  Integer  Programming  (IP)  is  a  natural  tool  for  these  problems  as  many  simple  interpretable  ML  models  can  be  represented  by  low-complexity  discrete  objects,  and  it  allows  for  the  flexible  incorporation  of  domain-specific  constraints  such  as  fairness  criteria.  However,  despite  its  success  in  numerous  industrial  applications,  such  as  scheduling  and  logistics,  exact  IP  methods  are  considered  to  be  too  computationally  demanding  to  be  used  in  many  ML  applications  and  are  eschewed  for  fast  heuristics.    This  thesis  endeavors  to  bridge  this  gap  between  exact  optimization  and  fast  heuristics  by  leveraging  large-scale  integer  programming  techniques  to  build  scalable  algorithms  that  can  outperform  existing  ML  heuristics  in  a  fraction  of  the  time  of  exact  IP-based  methods.  In  particular,  this  thesis  develops  novel  formulations  for  ML  problems  built  upon  strong  combinatorial  structure  that  can  flexibly  incorporate  domain-specific  constraints  such  as  fairness.  Underpinning  these  formulations  are  large-scale  optimization  procedures  that  are  informed  by  exact  optimization  methods  but  leverage  heuristics  tailored  for  ML  settings  that  allow  them  to  scale  to  large  data  sets.  Finally,  towards  democratizing  these  IP-based  machine  learning  tools,  this  thesis  explores  how  to  leverage  Large  Language  Models  to  enable  non-expert  users  to  interact  and  customize  mathematical  optimization  models.
■590    ▼aSchool  code:  0058.
■650  4▼aComputer  engineering.
■653    ▼aClustering
■653    ▼aFairness
■653    ▼aInteger  Programming
■653    ▼aMachine  learning
■690    ▼a0796
■690    ▼a0464
■690    ▼a0800
■71020▼aCornell  University▼bOperations  Research  and  Information  Engineering.
■7730  ▼tDissertations  Abstracts  International▼g85-12B.
■790    ▼a0058
■791    ▼aPh.D.
■792    ▼a2024
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T17161146▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    פרט מידע

    • הזמנה
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • התיקיה שלי
    גשמי
    Reg No. Call No. מיקום מצב להשאיל מידע
    TQ0031754 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * הזמנות זמינים בספר ההשאלה. כדי להזמין, נא לחץ על כפתור ההזמנה

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치