서브메뉴
검색
Quantum de Sitter Entropy and Sphere Partition Functions: A-Hypergeometric Approach to All-Loop Order.
Quantum de Sitter Entropy and Sphere Partition Functions: A-Hypergeometric Approach to All-Loop Order.
상세정보
- 자료유형
- 학위논문
- Control Number
- 0017164258
- International Standard Book Number
- 9798384493600
- Dewey Decimal Classification Number
- 530
- Main Entry-Personal Name
- Bandaru, Bhavya.
- Publication, Distribution, etc. (Imprint
- [S.l.] : Columbia University., 2024
- Publication, Distribution, etc. (Imprint
- Ann Arbor : ProQuest Dissertations & Theses, 2024
- Physical Description
- 159 p.
- General Note
- Source: Dissertations Abstracts International, Volume: 86-04, Section: B.
- General Note
- Advisor: Denef, Frederik.
- Dissertation Note
- Thesis (Ph.D.)--Columbia University, 2024.
- Summary, Etc.
- 요약In order to find quantum corrections to the de Sitter entropy, a new approach to higher loop Feynman integral computations on the sphere is presented. Arbitrary scalar Feynman integrals on a spherical background are brought into the generalized Euler integral (A-hypergeometric series/GKZ systems) form by expressing the massive scalar propagator as a bivariate radial Mellin transform of the massless scalar propagator in one higher dimensional Euclidean flat space. This formulation is expanded to include massive and massless vector fields by construction of similar embedding space propagators. Vector Feynman integrals are shown to be sums over generalized Euler integral formed of underlying scalar Feynman integrals. Granting existence of general spin embedding space propagators, general spin Feynman integrals are shown, by the construction of a "master" integral, to also be sums over generalized Euler integral representations of scalar Feynman integrals. Finding exact embedding space propagator expressions for fields of integer spin ≥ 2 and half integer spin is left to future work.
- Subject Added Entry-Topical Term
- Physics.
- Subject Added Entry-Topical Term
- Quantum physics.
- Subject Added Entry-Topical Term
- Applied mathematics.
- Index Term-Uncontrolled
- Algebraic geometry
- Index Term-Uncontrolled
- Feynman integrals
- Index Term-Uncontrolled
- Generalized Euler integrals
- Index Term-Uncontrolled
- Propagators
- Index Term-Uncontrolled
- Quantum gravity
- Added Entry-Corporate Name
- Columbia University Physics
- Host Item Entry
- Dissertations Abstracts International. 86-04B.
- Electronic Location and Access
- 로그인을 한후 보실 수 있는 자료입니다.
- Control Number
- joongbu:655580
MARC
008250224s2024 us ||||||||||||||c||eng d■001000017164258
■00520250211152939
■006m o d
■007cr#unu||||||||
■020 ▼a9798384493600
■035 ▼a(MiAaPQ)AAI31564823
■040 ▼aMiAaPQ▼cMiAaPQ
■0820 ▼a530
■1001 ▼aBandaru, Bhavya.
■24510▼aQuantum de Sitter Entropy and Sphere Partition Functions: A-Hypergeometric Approach to All-Loop Order.
■260 ▼a[S.l.]▼bColumbia University. ▼c2024
■260 1▼aAnn Arbor▼bProQuest Dissertations & Theses▼c2024
■300 ▼a159 p.
■500 ▼aSource: Dissertations Abstracts International, Volume: 86-04, Section: B.
■500 ▼aAdvisor: Denef, Frederik.
■5021 ▼aThesis (Ph.D.)--Columbia University, 2024.
■520 ▼aIn order to find quantum corrections to the de Sitter entropy, a new approach to higher loop Feynman integral computations on the sphere is presented. Arbitrary scalar Feynman integrals on a spherical background are brought into the generalized Euler integral (A-hypergeometric series/GKZ systems) form by expressing the massive scalar propagator as a bivariate radial Mellin transform of the massless scalar propagator in one higher dimensional Euclidean flat space. This formulation is expanded to include massive and massless vector fields by construction of similar embedding space propagators. Vector Feynman integrals are shown to be sums over generalized Euler integral formed of underlying scalar Feynman integrals. Granting existence of general spin embedding space propagators, general spin Feynman integrals are shown, by the construction of a "master" integral, to also be sums over generalized Euler integral representations of scalar Feynman integrals. Finding exact embedding space propagator expressions for fields of integer spin ≥ 2 and half integer spin is left to future work.
■590 ▼aSchool code: 0054.
■650 4▼aPhysics.
■650 4▼aQuantum physics.
■650 4▼aApplied mathematics.
■653 ▼aAlgebraic geometry
■653 ▼aFeynman integrals
■653 ▼aGeneralized Euler integrals
■653 ▼aPropagators
■653 ▼aQuantum gravity
■690 ▼a0605
■690 ▼a0599
■690 ▼a0364
■71020▼aColumbia University▼bPhysics.
■7730 ▼tDissertations Abstracts International▼g86-04B.
■790 ▼a0054
■791 ▼aPh.D.
■792 ▼a2024
■793 ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T17164258▼nKERIS▼z이 자료의 원문은 한국교육학술정보원에서 제공합니다.