본문

서브메뉴

Computational Tools for Structure-Guided Drug Discovery.
Computational Tools for Structure-Guided Drug Discovery.

상세정보

자료유형  
 학위논문
Control Number  
0017165046
International Standard Book Number  
9798346568339
Dewey Decimal Classification Number  
571.6
Main Entry-Personal Name  
Powers, Alexander.
Publication, Distribution, etc. (Imprint  
[S.l.] : Stanford University., 2024
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2024
Physical Description  
148 p.
General Note  
Source: Dissertations Abstracts International, Volume: 86-05, Section: B.
General Note  
Advisor: Dror, Ron.
Dissertation Note  
Thesis (Ph.D.)--Stanford University, 2024.
Summary, Etc.  
요약Most drugs function by binding to proteins and modulating their function. Computational methods that model the atomic interactions between drug molecules and proteins promise to greatly accelerate drug discovery. This work discusses the application and development of several computational methods, involving molecular simulations and machine learning, for understanding and designing novel therapeutics.First, we apply atomic-level simulations to investigate mechanisms that contribute to drug selectivity and avoid undesired side-effects. We reveal the structural basis for the selectivity of a long-studied Schizophrenia drug between structurally similar muscarinic acetylcholine receptors. We validate this mechanism experimentally through mutagenesis and use it to design molecules with altered selectivity profiles.Second, we develop a series of methods that use machine learning to assist in structure-guided drug design. Using the three-dimensional structure of a target protein, these methods aim to generate novel and diverse drug-like molecules that bind to the target. We compare several approaches, including a fragment-based approach specifically designed to incorporate chemical intuition.Third, we investigate new molecular mechanisms by which drug molecules can modulate the signaling of G-protein coupled receptors. Using atomic-level simulations, we found that certain ligands can trigger activation of free fatty acid receptor 1 by directly rearranging an intracellular loop that interacts with G-proteins. We further supported this non-canonical mechanism through targeted mutagenesis; specific mutations which disrupt interactions with the intracellular loop convert these agonists into inverse agonists in in vitroexperiments.This work highlights how computational tools, combined with complementary experimental methods, can accelerating drug discovery by elucidating molecular mechanisms as well as directly facilitating structure-guided drug design.
Subject Added Entry-Topical Term  
Signal transduction.
Subject Added Entry-Topical Term  
Mutation.
Subject Added Entry-Topical Term  
Carbon.
Subject Added Entry-Topical Term  
Binding sites.
Subject Added Entry-Topical Term  
Medical research.
Subject Added Entry-Topical Term  
Drug development.
Subject Added Entry-Topical Term  
Biology.
Subject Added Entry-Topical Term  
Medicine.
Subject Added Entry-Topical Term  
Pharmaceutical sciences.
Added Entry-Corporate Name  
Stanford University.
Host Item Entry  
Dissertations Abstracts International. 86-05B.
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:655476

MARC

 008250224s2024        us  ||||||||||||||c||eng  d
■001000017165046
■00520250211153117
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798346568339
■035    ▼a(MiAaPQ)AAI31710847
■035    ▼a(MiAaPQ)Stanfordbn615xh0212
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a571.6
■1001  ▼aPowers,  Alexander.
■24510▼aComputational  Tools  for  Structure-Guided  Drug  Discovery.
■260    ▼a[S.l.]▼bStanford  University.  ▼c2024
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2024
■300    ▼a148  p.
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  86-05,  Section:  B.
■500    ▼aAdvisor:  Dror,  Ron.
■5021  ▼aThesis  (Ph.D.)--Stanford  University,  2024.
■520    ▼aMost  drugs  function  by  binding  to  proteins  and  modulating  their  function.  Computational  methods  that  model  the  atomic  interactions  between  drug  molecules  and  proteins  promise  to  greatly  accelerate  drug  discovery.  This  work  discusses  the  application  and  development  of  several  computational  methods,  involving  molecular  simulations  and  machine  learning,  for  understanding  and  designing  novel  therapeutics.First,  we  apply  atomic-level  simulations  to  investigate  mechanisms  that  contribute  to  drug  selectivity  and  avoid  undesired  side-effects.  We  reveal  the  structural  basis  for  the  selectivity  of  a  long-studied  Schizophrenia  drug  between  structurally  similar  muscarinic  acetylcholine  receptors.  We  validate  this  mechanism  experimentally  through  mutagenesis  and  use  it  to  design  molecules  with  altered  selectivity  profiles.Second,  we  develop  a  series  of  methods  that  use  machine  learning  to  assist  in  structure-guided  drug  design.  Using  the  three-dimensional  structure  of  a  target  protein,  these  methods  aim  to  generate  novel  and  diverse  drug-like  molecules  that  bind  to  the  target.  We  compare  several  approaches,  including  a  fragment-based  approach  specifically  designed  to  incorporate  chemical  intuition.Third,  we  investigate  new  molecular  mechanisms  by  which  drug  molecules  can  modulate  the  signaling  of  G-protein  coupled  receptors.  Using  atomic-level  simulations,  we  found  that  certain  ligands  can  trigger  activation  of  free  fatty  acid  receptor  1  by  directly  rearranging  an  intracellular  loop  that  interacts  with  G-proteins.  We  further  supported  this  non-canonical  mechanism  through  targeted  mutagenesis;  specific  mutations  which  disrupt  interactions  with  the  intracellular  loop  convert  these  agonists  into  inverse  agonists  in  in  vitroexperiments.This  work  highlights  how  computational  tools,  combined  with  complementary  experimental  methods,  can  accelerating  drug  discovery  by  elucidating  molecular  mechanisms  as  well  as  directly  facilitating  structure-guided  drug  design.
■590    ▼aSchool  code:  0212.
■650  4▼aSignal  transduction.
■650  4▼aMutation.
■650  4▼aCarbon.
■650  4▼aBinding  sites.
■650  4▼aMedical  research.
■650  4▼aDrug  development.
■650  4▼aBiology.
■650  4▼aMedicine.
■650  4▼aPharmaceutical  sciences.
■690    ▼a0306
■690    ▼a0564
■690    ▼a0572
■71020▼aStanford  University.
■7730  ▼tDissertations  Abstracts  International▼g86-05B.
■790    ▼a0212
■791    ▼aPh.D.
■792    ▼a2024
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T17165046▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    신착도서 더보기
    관련도서 더보기
    최근 3년간 통계입니다.

    소장정보

    • 예약
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • 나의폴더
    소장자료
    등록번호 청구기호 소장처 대출가능여부 대출정보
    TQ0031498 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * 대출중인 자료에 한하여 예약이 가능합니다. 예약을 원하시면 예약버튼을 클릭하십시오.

    해당 도서를 다른 이용자가 함께 대출한 도서

    관련도서

    관련 인기도서

    도서위치