본문

서브메뉴

Deep Learning and CRISPR-Cas13d Ortholog Discovery for Optimized RNA Targeting.
Deep Learning and CRISPR-Cas13d Ortholog Discovery for Optimized RNA Targeting.

상세정보

자료유형  
 학위논문
Control Number  
0017161480
International Standard Book Number  
9798382235493
Dewey Decimal Classification Number  
575
Main Entry-Personal Name  
Jingyi Wei.
Publication, Distribution, etc. (Imprint  
[S.l.] : Stanford University., 2024
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2024
Physical Description  
95 p.
General Note  
Source: Dissertations Abstracts International, Volume: 85-11, Section: B.
General Note  
Advisor: Silvana Konermann.
Dissertation Note  
Thesis (Ph.D.)--Stanford University, 2024.
Summary, Etc.  
요약Effective mammalian transcriptome engineering technologies are needed to accelerate biological discovery and RNA therapeutics. Despite the promise of programmable CRISPR-Cas13 ribonucleases, their utility has been hampered by an incomplete understanding of guide RNA design rules and computational models for prediction of high efficiency guides. Here, we quantified the performance of 127,000 RfxCas13d (CasRx) guide RNAs and systematically evaluated seven machine learning models to build a guide efficiency prediction algorithm (https://www.RNAtargeting.org). I further validated the model across multiple genes and human cell types. Deep learning model interpretation revealed preferred sequence motifs and secondary features for highly efficient guides, elucidating CasRx targeting preferences and mechanisms.
Subject Added Entry-Topical Term  
Genetics.
Subject Added Entry-Topical Term  
Bioengineering.
Index Term-Uncontrolled  
RNA therapeutics
Index Term-Uncontrolled  
Biological discovery
Index Term-Uncontrolled  
CRISPR-Cas13 ribonucleases
Added Entry-Corporate Name  
Stanford University.
Host Item Entry  
Dissertations Abstracts International. 85-11B.
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:655464

MARC

 008250224s2024        us  ||||||||||||||c||eng  d
■001000017161480
■00520250211151402
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798382235493
■035    ▼a(MiAaPQ)AAI31255662
■035    ▼a(MiAaPQ)cw868kk0098
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a575
■1001  ▼aJingyi  Wei.
■24510▼aDeep  Learning  and  CRISPR-Cas13d  Ortholog  Discovery  for  Optimized  RNA  Targeting.
■260    ▼a[S.l.]▼bStanford  University.  ▼c2024
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2024
■300    ▼a95  p.
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  85-11,  Section:  B.
■500    ▼aAdvisor:  Silvana  Konermann.
■5021  ▼aThesis  (Ph.D.)--Stanford  University,  2024.
■520    ▼aEffective  mammalian  transcriptome  engineering  technologies  are  needed  to  accelerate  biological  discovery  and  RNA  therapeutics.  Despite  the  promise  of  programmable  CRISPR-Cas13  ribonucleases,  their  utility  has  been  hampered  by  an  incomplete  understanding  of  guide  RNA  design  rules  and  computational  models  for  prediction  of  high  efficiency  guides.  Here,  we  quantified  the  performance  of  127,000  RfxCas13d  (CasRx)  guide  RNAs  and  systematically  evaluated  seven  machine  learning  models  to  build  a  guide  efficiency  prediction  algorithm  (https://www.RNAtargeting.org).  I  further  validated  the  model  across  multiple  genes  and  human  cell  types.  Deep  learning  model  interpretation  revealed  preferred  sequence  motifs  and  secondary  features  for  highly  efficient  guides,  elucidating  CasRx  targeting  preferences  and  mechanisms.
■590    ▼aSchool  code:  0212.
■650  4▼aGenetics.
■650  4▼aBioengineering.
■653    ▼aRNA  therapeutics
■653    ▼aBiological  discovery
■653    ▼aCRISPR-Cas13  ribonucleases
■690    ▼a0202
■690    ▼a0369
■71020▼aStanford  University.
■7730  ▼tDissertations  Abstracts  International▼g85-11B.
■790    ▼a0212
■791    ▼aPh.D.
■792    ▼a2024
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T17161480▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    高级搜索信息

    • 预订
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • 我的文件夹
    材料
    注册编号 呼叫号码. 收藏 状态 借信息.
    TQ0031486 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    *保留在借用的书可用。预订,请点击预订按钮

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치