본문

서브메뉴

Essays in Labor Economics.
Essays in Labor Economics.

상세정보

자료유형  
 학위논문
Control Number  
0017162951
International Standard Book Number  
9798384344773
Dewey Decimal Classification Number  
378.12
Main Entry-Personal Name  
Qiu, Xinyao.
Publication, Distribution, etc. (Imprint  
[S.l.] : Stanford University., 2024
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2024
Physical Description  
173 p.
General Note  
Source: Dissertations Abstracts International, Volume: 86-03, Section: A.
General Note  
Advisor: Pistaferri, Luigi.
Dissertation Note  
Thesis (Ph.D.)--Stanford University, 2024.
Summary, Etc.  
요약This dissertation consists of three essays in labor economics. All three chapters focus on documenting frictions in educational settings and discuss their implications for long-term educational and labor market outcomes. The first two chapters explore how students' college application decisions are impacted by frictions, including information frictions (Chapter 1) and behavioral frictions (Chapter 2, co-authored with Hongbin Li), using administrative data from the centralized college application and admission system in China. The third chapter (co-authored with Petra Persson and Maya Rossin-Slater) studies marginal diagnoses of Attention Deficit Hyperactivity Disorder resulting from school entry cutoffs.The first chapter studies disparities in college major choices across students from different socioeconomic backgrounds and analyzes their implications for intergenerational income mobility. One potential explanation for these disparities is differential access to information about majors' academic content and personal fit. To explore the impact of information frictions on major choices, I use administrative data from the centralized college application system in China. Consistent with the information inequality hypothesis, I document that students of low socioeconomic status (SES) are 21.6% (3.16 percentage points) more likely than their high-SES peers to choose majors that are familiar to them from their high school curricula. Further support for the information inequality hypothesis comes from a survey experiment in which high school students report their expectations about college majors and from information spillovers among high school classmates. To discuss the economic consequences, I calibrate a model of major choice and find that, because of information inequality, low-SES students face higher mismatch rates and lower future incomes than their high-SES peers. Counterfactual analyses indicate that information interventions and affirmative action policies can effectively narrow the income gap across socioeconomic backgrounds.The second chapter demonstrates that students' college application decisions are impacted by left-digit bias, which is a simplifying heuristic that makes individuals' perceptions disproportionately influenced by the leftmost digits of a number. We find strong discontinuities in college application decisions between students with similar college entrance exam scores who fall on opposite sides of multiples of 10 (e.g., students who score 519 versus 521). Students with scores just below multiples of 10 make more conservative college application choices that place them into less selective colleges and majors. In contrast, students who score at or just above multiples of 10 aim and achieve higher but are at greater risk of overshooting. The results highlight the role of behavioral frictions in students' application decisions, despite the significant educational and labor market consequences associated with them.The third chapter explores frictions in educational settings beyond college application decisions. We focus on the marginal diagnoses of Attention Deficit Hyperactivity Disorder (ADHD) that result from school entry cutoffs. Specifically, we exploit a well-documented fact: Children who are younger for their grade level are more likely to be diagnosed with ADHD compared to their older classmates. This diagnosis gap is often attributed to maturity differences that are mistakenly perceived as differences in ADHD prevalence. Using population-level Swedish administrative data, we show how these marginal diagnoses spill over through the family tree. Younger family members of children born just before the school entry cutoff are more likely to be diagnosed with ADHD, yet without any clear long-term human capital gains. Our results underscore that a single marginal diagnosis can trigger additional diagnoses among other family members, thereby amplifying frictions and misallocation in healthcare.
Subject Added Entry-Topical Term  
Marital status.
Subject Added Entry-Topical Term  
Socioeconomic factors.
Subject Added Entry-Topical Term  
Secondary schools.
Subject Added Entry-Topical Term  
Socioeconomic status.
Subject Added Entry-Topical Term  
Higher education.
Subject Added Entry-Topical Term  
Secondary education.
Subject Added Entry-Topical Term  
Sociology.
Added Entry-Corporate Name  
Stanford University.
Host Item Entry  
Dissertations Abstracts International. 86-03A.
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:655437

MARC

 008250224s2024        us  ||||||||||||||c||eng  d
■001000017162951
■00520250211152116
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798384344773
■035    ▼a(MiAaPQ)AAI31460300
■035    ▼a(MiAaPQ)Stanfordjv571wt3507
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a378.12
■1001  ▼aQiu,  Xinyao.
■24510▼aEssays  in  Labor  Economics.
■260    ▼a[S.l.]▼bStanford  University.  ▼c2024
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2024
■300    ▼a173  p.
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  86-03,  Section:  A.
■500    ▼aAdvisor:  Pistaferri,  Luigi.
■5021  ▼aThesis  (Ph.D.)--Stanford  University,  2024.
■520    ▼aThis  dissertation  consists  of  three  essays  in  labor  economics.  All  three  chapters  focus  on  documenting  frictions  in  educational  settings  and  discuss  their  implications  for  long-term  educational  and  labor  market  outcomes.  The  first  two  chapters  explore  how  students'  college  application  decisions  are  impacted  by  frictions,  including  information  frictions  (Chapter  1)  and  behavioral  frictions  (Chapter  2,  co-authored  with  Hongbin  Li),  using  administrative  data  from  the  centralized  college  application  and  admission  system  in  China.  The  third  chapter  (co-authored  with  Petra  Persson  and  Maya  Rossin-Slater)  studies  marginal  diagnoses  of  Attention  Deficit  Hyperactivity  Disorder  resulting  from  school  entry  cutoffs.The  first  chapter  studies  disparities  in  college  major  choices  across  students  from  different  socioeconomic  backgrounds  and  analyzes  their  implications  for  intergenerational  income  mobility.  One  potential  explanation  for  these  disparities  is  differential  access  to  information  about  majors'  academic  content  and  personal  fit.  To  explore  the  impact  of  information  frictions  on  major  choices,  I  use  administrative  data  from  the  centralized  college  application  system  in  China.  Consistent  with  the  information  inequality  hypothesis,  I  document  that  students  of  low  socioeconomic  status  (SES)  are  21.6%  (3.16  percentage  points)  more  likely  than  their  high-SES  peers  to  choose  majors  that  are  familiar  to  them  from  their  high  school  curricula.  Further  support  for  the  information  inequality  hypothesis  comes  from  a  survey  experiment  in  which  high  school  students  report  their  expectations  about  college  majors  and  from  information  spillovers  among  high  school  classmates.  To  discuss  the  economic  consequences,  I  calibrate  a  model  of  major  choice  and  find  that,  because  of  information  inequality,  low-SES  students  face  higher  mismatch  rates  and  lower  future  incomes  than  their  high-SES  peers.  Counterfactual  analyses  indicate  that  information  interventions  and  affirmative  action  policies  can  effectively  narrow  the  income  gap  across  socioeconomic  backgrounds.The  second  chapter  demonstrates  that  students'  college  application  decisions  are  impacted  by  left-digit  bias,  which  is  a  simplifying  heuristic  that  makes  individuals'  perceptions  disproportionately  influenced  by  the  leftmost  digits  of  a  number.  We  find  strong  discontinuities  in  college  application  decisions  between  students  with  similar  college  entrance  exam  scores  who  fall  on  opposite  sides  of  multiples  of  10  (e.g.,  students  who  score  519  versus  521).  Students  with  scores  just  below  multiples  of  10  make  more  conservative  college  application  choices  that  place  them  into  less  selective  colleges  and  majors.  In  contrast,  students  who  score  at  or  just  above  multiples  of  10  aim  and  achieve  higher  but  are  at  greater  risk  of  overshooting.  The  results  highlight  the  role  of  behavioral  frictions  in  students'  application  decisions,  despite  the  significant  educational  and  labor  market  consequences  associated  with  them.The  third  chapter  explores  frictions  in  educational  settings  beyond  college  application  decisions.  We  focus  on  the  marginal  diagnoses  of  Attention  Deficit  Hyperactivity  Disorder  (ADHD)  that  result  from  school  entry  cutoffs.  Specifically,  we  exploit  a  well-documented  fact:  Children  who  are  younger  for  their  grade  level  are  more  likely  to  be  diagnosed  with  ADHD  compared  to  their  older  classmates.  This  diagnosis  gap  is  often  attributed  to  maturity  differences  that  are  mistakenly  perceived  as  differences  in  ADHD  prevalence.  Using  population-level  Swedish  administrative  data,  we  show  how  these  marginal  diagnoses  spill  over  through  the  family  tree.  Younger  family  members  of  children  born  just  before  the  school  entry  cutoff  are  more  likely  to  be  diagnosed  with  ADHD,  yet  without  any  clear  long-term  human  capital  gains.  Our  results  underscore  that  a  single  marginal  diagnosis  can  trigger  additional  diagnoses  among  other  family  members,  thereby  amplifying  frictions  and  misallocation  in  healthcare.
■590    ▼aSchool  code:  0212.
■650  4▼aMarital  status.
■650  4▼aSocioeconomic  factors.
■650  4▼aSecondary  schools.
■650  4▼aSocioeconomic  status.
■650  4▼aHigher  education.
■650  4▼aSecondary  education.
■650  4▼aSociology.
■690    ▼a0501
■690    ▼a0745
■690    ▼a0510
■690    ▼a0629
■690    ▼a0533
■690    ▼a0626
■71020▼aStanford  University.
■7730  ▼tDissertations  Abstracts  International▼g86-03A.
■790    ▼a0212
■791    ▼aPh.D.
■792    ▼a2024
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T17162951▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    신착도서 더보기
    관련도서 더보기
    최근 3년간 통계입니다.

    소장정보

    • 예약
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • 나의폴더
    소장자료
    등록번호 청구기호 소장처 대출가능여부 대출정보
    TQ0031459 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * 대출중인 자료에 한하여 예약이 가능합니다. 예약을 원하시면 예약버튼을 클릭하십시오.

    해당 도서를 다른 이용자가 함께 대출한 도서

    관련도서

    관련 인기도서

    도서위치