본문

서브메뉴

Exploring Hybrid Algorithms and Optimization Strategies in Non-Conventional Computing Architectures.
Exploring Hybrid Algorithms and Optimization Strategies in Non-Conventional Computing Architectures.

상세정보

자료유형  
 학위논문
Control Number  
0017162955
International Standard Book Number  
9798384340713
Dewey Decimal Classification Number  
004
Main Entry-Personal Name  
Brown, Robin Alexandra.
Publication, Distribution, etc. (Imprint  
[S.l.] : Stanford University., 2024
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2024
Physical Description  
158 p.
General Note  
Source: Dissertations Abstracts International, Volume: 86-03, Section: B.
General Note  
Advisor: Pavone, Marco.
Dissertation Note  
Thesis (Ph.D.)--Stanford University, 2024.
Summary, Etc.  
요약The relentless increase in computing workloads coupled with the potential slowdown of Moore's law has spurred the development of both non-conventional computing architectures and algorithms that make use of these novel architectures. This research is primarily conducted by disjoint communities that rely heavily on algorithmic "primitives" to abstract away the intricacies of the other's work, and to serve as a buffer between them to enable concurrent development. As additional research builds on existing primitives, it creates a feedback cycle where those primitives become increasingly entrenched, creating further justification for continuing to work with them. This is particularly problematic because it is unclear whether the small number of primitives that dominate the literature today were deliberately designed with real-world applications in mind. More broadly, we advocate for taking a holistic view of hardware, algorithm and abstraction interactions, with the goal of promoting primitives that appropriately balance ease of hardware implementation with impact of downstream applications.In this thesis, we primarily focus on the interaction between algorithms and the Ising abstraction, with the objective of deriving complexity metrics that quantify their "fit". To do so, we will begin by introducing copositive and completely-positive optimization as a bridge between convex and non-convex optimization. We find that this is a helpful lens for complexity analysis of hybrid algorithms because it allows for convex optimization algorithms to be applied to some of the non-convex problems that we hope to address with non-conventional computing.We will examine neural network verification as an illustrative example to develop geometric intuition for how copositive/completely positive optimization can exactly represent mixed-binary quadratic programs, while closely related semi-definite programs result in relaxation gaps. While the completely positive representation of neural network verification is intractable, it is useful in its own right due to its similarity to semi-definite programming (SDP). This perspective offers insights for how to construct tighter SDP-based relaxations for verification and unifies existing SDP-based verification methods.With this intuition in place, we will then present our hybrid Ising-classical cutting-plane algorithm for copositive optimization. We will examine the algorithm's convergence guarantees, which it notably inherits directly from existing analysis of convex optimization algorithms. Concluding this section, we leverage our proposed methodology to justify revising the Ising abstraction.Finally, we turn our attention to the Coherent Ising Machine as an example of hardware whose native physics is more closely aligned with the modified Ising abstraction -- this variant of the CIM is referred to as the Continuous-Variable Coherent Ising Machine (CV-CIM). We will show how existing optimization techniques, such as momentum and Adam, can be readily incorporated into the CV-CIM. These modifications allow the device to inherit many of the favorable properties of these algorithms, including accelerated convergence, superior navigation of non-convex landscapes, and robustness to parameter tuning.
Subject Added Entry-Topical Term  
Quantum computing.
Subject Added Entry-Topical Term  
Sample size.
Subject Added Entry-Topical Term  
Integer programming.
Subject Added Entry-Topical Term  
Computers.
Subject Added Entry-Topical Term  
Graphs.
Subject Added Entry-Topical Term  
Neural networks.
Subject Added Entry-Topical Term  
Plot (Narrative).
Subject Added Entry-Topical Term  
Convex analysis.
Subject Added Entry-Topical Term  
Design.
Subject Added Entry-Topical Term  
Complexity theory.
Subject Added Entry-Topical Term  
Optimization algorithms.
Subject Added Entry-Topical Term  
Geometry.
Subject Added Entry-Topical Term  
Computer science.
Subject Added Entry-Topical Term  
Mathematics.
Added Entry-Corporate Name  
Stanford University.
Host Item Entry  
Dissertations Abstracts International. 86-03B.
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:655433

MARC

 008250224s2024        us  ||||||||||||||c||eng  d
■001000017162955
■00520250211152116
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798384340713
■035    ▼a(MiAaPQ)AAI31460310
■035    ▼a(MiAaPQ)Stanfordkx590cv4574
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a004
■1001  ▼aBrown,  Robin  Alexandra.
■24510▼aExploring  Hybrid  Algorithms  and  Optimization  Strategies  in  Non-Conventional  Computing  Architectures.
■260    ▼a[S.l.]▼bStanford  University.  ▼c2024
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2024
■300    ▼a158  p.
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  86-03,  Section:  B.
■500    ▼aAdvisor:  Pavone,  Marco.
■5021  ▼aThesis  (Ph.D.)--Stanford  University,  2024.
■520    ▼aThe  relentless  increase  in  computing  workloads  coupled  with  the  potential  slowdown  of  Moore's  law  has  spurred  the  development  of  both  non-conventional  computing  architectures  and  algorithms  that  make  use  of  these  novel  architectures.  This  research  is  primarily  conducted  by  disjoint  communities  that  rely  heavily  on  algorithmic  "primitives"  to  abstract  away  the  intricacies  of  the  other's  work,  and  to  serve  as  a  buffer  between  them  to  enable  concurrent  development.  As  additional  research  builds  on  existing  primitives,  it  creates  a  feedback  cycle  where  those  primitives  become  increasingly  entrenched,  creating  further  justification  for  continuing  to  work  with  them.  This  is  particularly  problematic  because  it  is  unclear  whether  the  small  number  of  primitives  that  dominate  the  literature  today  were  deliberately  designed  with  real-world  applications  in  mind.  More  broadly,  we  advocate  for  taking  a  holistic  view  of  hardware,  algorithm  and  abstraction  interactions,  with  the  goal  of  promoting  primitives  that  appropriately  balance  ease  of  hardware  implementation  with  impact  of  downstream  applications.In  this  thesis,  we  primarily  focus  on  the  interaction  between  algorithms  and  the  Ising  abstraction,  with  the  objective  of  deriving  complexity  metrics  that  quantify  their  "fit".  To  do  so,  we  will  begin  by  introducing  copositive  and  completely-positive  optimization  as  a  bridge  between  convex  and  non-convex  optimization.  We  find  that  this  is  a  helpful  lens  for  complexity  analysis  of  hybrid  algorithms  because  it  allows  for  convex  optimization  algorithms  to  be  applied  to  some  of  the  non-convex  problems  that  we  hope  to  address  with  non-conventional  computing.We  will  examine  neural  network  verification  as  an  illustrative  example  to  develop  geometric  intuition  for  how  copositive/completely  positive  optimization  can  exactly  represent  mixed-binary  quadratic  programs,  while  closely  related  semi-definite  programs  result  in  relaxation  gaps.  While  the  completely  positive  representation  of  neural  network  verification  is  intractable,  it  is  useful  in  its  own  right  due  to  its  similarity  to  semi-definite  programming  (SDP).  This  perspective  offers  insights  for  how  to  construct  tighter  SDP-based  relaxations  for  verification  and  unifies  existing  SDP-based  verification  methods.With  this  intuition  in  place,  we  will  then  present  our  hybrid  Ising-classical  cutting-plane  algorithm  for  copositive  optimization.  We  will  examine  the  algorithm's  convergence  guarantees,  which  it  notably  inherits  directly  from  existing  analysis  of  convex  optimization  algorithms.  Concluding  this  section,  we  leverage  our  proposed  methodology  to  justify  revising  the  Ising  abstraction.Finally,  we  turn  our  attention  to  the  Coherent  Ising  Machine  as  an  example  of  hardware  whose  native  physics  is  more  closely  aligned  with  the  modified  Ising  abstraction  --  this  variant  of  the  CIM  is  referred  to  as  the  Continuous-Variable  Coherent  Ising  Machine  (CV-CIM).  We  will  show  how  existing  optimization  techniques,  such  as  momentum  and  Adam,  can  be  readily  incorporated  into  the  CV-CIM.  These  modifications  allow  the  device  to  inherit  many  of  the  favorable  properties  of  these  algorithms,  including  accelerated  convergence,  superior  navigation  of  non-convex  landscapes,  and  robustness  to  parameter  tuning.
■590    ▼aSchool  code:  0212.
■650  4▼aQuantum  computing.
■650  4▼aSample  size.
■650  4▼aInteger  programming.
■650  4▼aComputers.
■650  4▼aGraphs.
■650  4▼aNeural  networks.
■650  4▼aPlot  (Narrative).
■650  4▼aConvex  analysis.
■650  4▼aDesign.
■650  4▼aComplexity  theory.
■650  4▼aOptimization  algorithms.
■650  4▼aGeometry.
■650  4▼aComputer  science.
■650  4▼aMathematics.
■690    ▼a0389
■690    ▼a0800
■690    ▼a0984
■690    ▼a0405
■71020▼aStanford  University.
■7730  ▼tDissertations  Abstracts  International▼g86-03B.
■790    ▼a0212
■791    ▼aPh.D.
■792    ▼a2024
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T17162955▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    최근 3년간 통계입니다.

    Buch Status

    • Reservierung
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • Meine Mappe
    Sammlungen
    Registrierungsnummer callnumber Standort Verkehr Status Verkehr Info
    TQ0031455 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * Kredite nur für Ihre Daten gebucht werden. Wenn Sie buchen möchten Reservierungen, klicken Sie auf den Button.

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치