본문

서브메뉴

Bridging the Gap Between Automated Logical Reasoning and Machine Learning.
Bridging the Gap Between Automated Logical Reasoning and Machine Learning.

상세정보

자료유형  
 학위논문
Control Number  
0017162968
International Standard Book Number  
9798384341765
Dewey Decimal Classification Number  
515
Main Entry-Personal Name  
Wu, Haoze.
Publication, Distribution, etc. (Imprint  
[S.l.] : Stanford University., 2024
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2024
Physical Description  
164 p.
General Note  
Source: Dissertations Abstracts International, Volume: 86-03, Section: A.
General Note  
Advisor: Barrett, Clark.
Dissertation Note  
Thesis (Ph.D.)--Stanford University, 2024.
Summary, Etc.  
요약Human rationality comprises two facets: deductive reasoning -- deriving conclusions from premises, and inductive reasoning -- inferring patterns from observations. These two forms of thinking are reflected in the ways we automate tasks with computers. The former plays a crucial role in the field of formal methods, which aims to ensure that computer systems work exactly as intended, in domains ranging from chip design to aviation. The latter drives the field of machine learning, which has revolutionized our ability to handle complex and uncertain inputs, such as images and natural languages. While both approaches have enabled tremendous technological progress, each faces substantial challenges: formal methods struggle with scalability and abstract high-level reasoning, while the unstable and opaque nature of deep learning models impedes their actual deployment in high-stake applications. One promising avenue towards addressing these challenges, and creating safer and smarter computer systems, is to bridge the gap between these two fields: just as human intelligence is a symbiosis of deduction and induction, I dream about a future where computer systems seamlessly integrate logical reasoning and machine learning to automate complex tasks in a scalable, reliable, explainable, and safe manner.I think my tendency to dream about this future comes from my background in philosophy during my undergraduate studies. Through a combination of serendipity, and conscious and sub-conscious choices, I have been able to explore this direction during my PhD training. Although the dream is not fully realized, I feel fortunate to have put together this disseration that may contribute to that future. The dissertation is divided into two parts, each guided by a key question:1. Can automated reasoning be used to prove properties about deep-learning-enabled systems?2. Can machine learning enhance the scalability of automated reasoning tools?Part I discusses a set of automated reasoning techniques for formally analyzing artificial neural networks, the cornerstone of modern machine learning. These techniques lie at the core of version 2.0 of the Marabou framework, a popular formal analyzer of neural networks. Part II outlines two methodologies for developing push-button machine-learning-driven automated reasoning tools, with applications in hardware and program verification.
Subject Added Entry-Topical Term  
Convex analysis.
Subject Added Entry-Topical Term  
Distance learning.
Subject Added Entry-Topical Term  
Large language models.
Subject Added Entry-Topical Term  
Cognition & reasoning.
Subject Added Entry-Topical Term  
Neural networks.
Subject Added Entry-Topical Term  
Cognitive psychology.
Subject Added Entry-Topical Term  
Educational technology.
Subject Added Entry-Topical Term  
Mathematics.
Added Entry-Corporate Name  
Stanford University.
Host Item Entry  
Dissertations Abstracts International. 86-03A.
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:655427

MARC

 008250224s2024        us  ||||||||||||||c||eng  d
■001000017162968
■00520250211152118
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798384341765
■035    ▼a(MiAaPQ)AAI31460332
■035    ▼a(MiAaPQ)Stanfordpw103gj9221
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a515
■1001  ▼aWu,  Haoze.
■24510▼aBridging  the  Gap  Between  Automated  Logical  Reasoning  and  Machine  Learning.
■260    ▼a[S.l.]▼bStanford  University.  ▼c2024
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2024
■300    ▼a164  p.
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  86-03,  Section:  A.
■500    ▼aAdvisor:  Barrett,  Clark.
■5021  ▼aThesis  (Ph.D.)--Stanford  University,  2024.
■520    ▼aHuman  rationality  comprises  two  facets:  deductive  reasoning  --  deriving  conclusions  from  premises,  and  inductive  reasoning  --  inferring  patterns  from  observations.  These  two  forms  of  thinking  are  reflected  in  the  ways  we  automate  tasks  with  computers.  The  former  plays  a  crucial  role  in  the  field  of  formal  methods,  which  aims  to  ensure  that  computer  systems  work  exactly  as  intended,  in  domains  ranging  from  chip  design  to  aviation.  The  latter  drives  the  field  of  machine  learning,  which  has  revolutionized  our  ability  to  handle  complex  and  uncertain  inputs,  such  as  images  and  natural  languages.  While  both  approaches  have  enabled  tremendous  technological  progress,  each  faces  substantial  challenges:  formal  methods  struggle  with  scalability  and  abstract  high-level  reasoning,  while  the  unstable  and  opaque  nature  of  deep  learning  models  impedes  their  actual  deployment  in  high-stake  applications.  One  promising  avenue  towards  addressing  these  challenges,  and  creating  safer  and  smarter  computer  systems,  is  to  bridge  the  gap  between  these  two  fields:  just  as  human  intelligence  is  a  symbiosis  of  deduction  and  induction,  I  dream  about  a  future  where  computer  systems  seamlessly  integrate  logical  reasoning  and  machine  learning  to  automate  complex  tasks  in  a  scalable,  reliable,  explainable,  and  safe  manner.I  think  my  tendency  to  dream  about  this  future  comes  from  my  background  in  philosophy  during  my  undergraduate  studies.  Through  a  combination  of  serendipity,  and  conscious  and  sub-conscious  choices,  I  have  been  able  to  explore  this  direction  during  my  PhD  training.  Although  the  dream  is  not  fully  realized,  I  feel  fortunate  to  have  put  together  this  disseration  that  may  contribute  to  that  future.  The  dissertation  is  divided  into  two  parts,  each  guided  by  a  key  question:1.  Can  automated  reasoning  be  used  to  prove  properties  about  deep-learning-enabled  systems?2.  Can  machine  learning  enhance  the  scalability  of  automated  reasoning  tools?Part  I  discusses  a  set  of  automated  reasoning  techniques  for  formally  analyzing  artificial  neural  networks,  the  cornerstone  of  modern  machine  learning.  These  techniques  lie  at  the  core  of  version  2.0  of  the  Marabou  framework,  a  popular  formal  analyzer  of  neural  networks.  Part  II  outlines  two  methodologies  for  developing  push-button  machine-learning-driven  automated  reasoning  tools,  with  applications  in  hardware  and  program  verification.
■590    ▼aSchool  code:  0212.
■650  4▼aConvex  analysis.
■650  4▼aDistance  learning.
■650  4▼aLarge  language  models.
■650  4▼aCognition  &  reasoning.
■650  4▼aNeural  networks.
■650  4▼aCognitive  psychology.
■650  4▼aEducational  technology.
■650  4▼aMathematics.
■690    ▼a0800
■690    ▼a0633
■690    ▼a0710
■690    ▼a0405
■71020▼aStanford  University.
■7730  ▼tDissertations  Abstracts  International▼g86-03A.
■790    ▼a0212
■791    ▼aPh.D.
■792    ▼a2024
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T17162968▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    高级搜索信息

    • 预订
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • 我的文件夹
    材料
    注册编号 呼叫号码. 收藏 状态 借信息.
    TQ0031449 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    *保留在借用的书可用。预订,请点击预订按钮

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치