본문

서브메뉴

BODIPY as a Chromophore and an Anchor to Metal Oxides for Solar Fuel Applications.
BODIPY as a Chromophore and an Anchor to Metal Oxides for Solar Fuel Applications.

상세정보

자료유형  
 학위논문
Control Number  
0017160171
International Standard Book Number  
9798383566879
Dewey Decimal Classification Number  
546
Main Entry-Personal Name  
Jayworth, Josephine A.
Publication, Distribution, etc. (Imprint  
[S.l.] : Yale University., 2024
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2024
Physical Description  
132 p.
General Note  
Source: Dissertations Abstracts International, Volume: 86-02, Section: B.
General Note  
Advisor: Brudvig, Gary W.
Dissertation Note  
Thesis (Ph.D.)--Yale University, 2024.
Summary, Etc.  
요약To meet current goals for carbon neutral economies it is important to transition to renewable energy sources and storage solutions. Solar radiation is a cheap and abundant source of renewable energy, but it suffers in grid scale applications due to being intermittent and diffuse. Similar to how plants use sunlight to store energy in the form of sugar via photosynthesis, artificial systems can store solar energy in the form of chemical bonds as solar fuels. One such type of artificial system is a water splitting dye sensitized photoelectrochemical cell (WS-DSPEC), which will be discussed throughout this thesis. WS-DSPECs are introduced as well as the design principles for building an efficient and robust photoanode. An effective photoanode requires strong surface immobilization strategies for attachment of molecular dyes and catalysts to the semiconductor surface. Several different attachment methods are discussed. Additionally different photosensitizers are reviewed and with special attention paid to BODIPY (4,4-difluoro-4-bora-3a,4a-diaza-sindacene).Covalent attachment of molecules to metal oxide surfaces typically demands the presence of an anchoring group that in turn requires synthetic steps to introduce. BODIPY chromophores have long been used in dye-sensitized solar cells, but carboxylic acid groups typically had to be installed to act as surface anchors. In this thesis we find that even without the introduction of such anchors, the unmodified BODIPY can bind to TiO2 surfaces via its BF2 group through boron-oxygen surface bonds. Dipyrrin, the parent molecule of BODIPY, is also capable of binding directly to TiO2 surfaces, likely through its chelating nitrogen atoms. These binding modes prove to be even more robust than that of an installed carboxylate and offer a new way to attach molecular complexes to surfaces for (photo)catalytic applications since, once bound, we show in this thesis that surface bound BODIPY and dipyrrin derivatives exhibit ultrafast photoinjection of electrons into the conduction band of TiO2.Advancement toward dye-sensitized photoelectrochemical cells to produce solar fuels by solar-driven water splitting requires a photosensitizer that is firmly attached to the semiconducting photoelectrodes. Covalent binding enhances the efficiency of electron injection from the photoexcited dye into the metal oxide. Optimization of charge transfer, efficient electron injection, and minimal electron-hole recombination are mandatory for achieving high efficiencies. In this thesis, a BODIPY-based dye exploiting an innovative surface-anchoring mode via boron is compared with a similar dye bound by a traditional carboxylic acid anchoring group. Through terahertz and transient absorption spectroscopic studies, along with GFN-xTB calculations, we find that, when compared to the traditional carboxylic acid anchoring group, electron injection of boron-bound BODIPY is faster into both TiO2 and SnO2. In addition, binding stability is improved over a wide range of pH. Subsequent photoelectrochemical studies using a sacrificial electron donor showed this combined dye and anchoring group maintained photocurrent with good stability over long-time irradiation. This recently discovered binding mode of BODIPY shows excellent electron injection and good stability over time, making it promising for future investigations. Finally, for a functional WS-DSPEC photoanode there needs to be both an effective photosensitizer and catalyst combined. There are various different designs for these photoanodes, which are discussed in detail in this thesis. Three different arrangements of the BODIPY photosensitizer and an iridium water oxidation catalyst were synthesized for photocatalysis. While none were effective for water oxidation, lessons were extracted regarding the charge transport properties of the different photoanodes and insights into to future designs.
Subject Added Entry-Topical Term  
Inorganic chemistry.
Subject Added Entry-Topical Term  
Materials science.
Subject Added Entry-Topical Term  
Alternative energy.
Subject Added Entry-Topical Term  
Physical chemistry.
Index Term-Uncontrolled  
Solar radiation
Index Term-Uncontrolled  
Semiconductors
Index Term-Uncontrolled  
Photoelectrochemical cells
Index Term-Uncontrolled  
Charge transfer
Index Term-Uncontrolled  
Carboxylic acid
Added Entry-Corporate Name  
Yale University Chemistry
Host Item Entry  
Dissertations Abstracts International. 86-02B.
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:655359

MARC

 008250224s2024        us  ||||||||||||||c||eng  d
■001000017160171
■00520250211150925
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798383566879
■035    ▼a(MiAaPQ)AAI30988545
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a546
■1001  ▼aJayworth,  Josephine  A.
■24510▼aBODIPY  as  a  Chromophore  and  an  Anchor  to  Metal  Oxides  for  Solar  Fuel  Applications.
■260    ▼a[S.l.]▼bYale  University.  ▼c2024
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2024
■300    ▼a132  p.
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  86-02,  Section:  B.
■500    ▼aAdvisor:  Brudvig,  Gary  W.
■5021  ▼aThesis  (Ph.D.)--Yale  University,  2024.
■520    ▼aTo  meet  current  goals  for  carbon  neutral  economies  it  is  important  to  transition  to  renewable  energy  sources  and  storage  solutions.  Solar  radiation  is  a  cheap  and  abundant  source  of  renewable  energy,  but  it  suffers  in  grid  scale  applications  due  to  being  intermittent  and  diffuse.  Similar  to  how  plants  use  sunlight  to  store  energy  in  the  form  of  sugar  via  photosynthesis,  artificial  systems  can  store  solar  energy  in  the  form  of  chemical  bonds  as  solar  fuels.  One  such  type  of  artificial  system  is  a  water  splitting  dye  sensitized  photoelectrochemical  cell  (WS-DSPEC),  which  will  be  discussed  throughout  this  thesis.  WS-DSPECs  are  introduced  as  well  as  the  design  principles  for  building  an  efficient  and  robust  photoanode.  An  effective  photoanode  requires  strong  surface  immobilization  strategies  for  attachment  of  molecular  dyes  and  catalysts  to  the  semiconductor  surface.  Several  different  attachment  methods  are  discussed.  Additionally  different  photosensitizers  are  reviewed  and  with  special  attention  paid  to  BODIPY  (4,4-difluoro-4-bora-3a,4a-diaza-sindacene).Covalent  attachment  of  molecules  to  metal  oxide  surfaces  typically  demands  the  presence  of  an  anchoring  group  that  in  turn  requires  synthetic  steps  to  introduce.  BODIPY  chromophores  have  long  been  used  in  dye-sensitized  solar  cells,  but  carboxylic  acid  groups  typically  had  to  be  installed  to  act  as  surface  anchors.  In  this  thesis  we  find  that  even  without  the  introduction  of  such  anchors,  the  unmodified  BODIPY  can  bind  to  TiO2  surfaces  via  its  BF2  group  through  boron-oxygen  surface  bonds.  Dipyrrin,  the  parent  molecule  of  BODIPY,  is  also  capable  of  binding  directly  to  TiO2  surfaces,  likely  through  its  chelating  nitrogen  atoms.  These  binding  modes  prove  to  be  even  more  robust  than  that  of  an  installed  carboxylate  and  offer  a  new  way  to  attach  molecular  complexes  to  surfaces  for  (photo)catalytic  applications  since,  once  bound,  we  show  in  this  thesis  that  surface  bound  BODIPY  and  dipyrrin  derivatives  exhibit  ultrafast  photoinjection  of  electrons  into  the  conduction  band  of  TiO2.Advancement  toward  dye-sensitized  photoelectrochemical  cells  to  produce  solar  fuels  by  solar-driven  water  splitting  requires  a  photosensitizer  that  is  firmly  attached  to  the  semiconducting  photoelectrodes.  Covalent  binding  enhances  the  efficiency  of  electron  injection  from  the  photoexcited  dye  into  the  metal  oxide.  Optimization  of  charge  transfer,  efficient  electron  injection,  and  minimal  electron-hole  recombination  are  mandatory  for  achieving  high  efficiencies.  In  this  thesis,  a  BODIPY-based  dye  exploiting  an  innovative  surface-anchoring  mode  via  boron  is  compared  with  a  similar  dye  bound  by  a  traditional  carboxylic  acid  anchoring  group.  Through  terahertz  and  transient  absorption  spectroscopic  studies,  along  with  GFN-xTB  calculations,  we  find  that,  when  compared  to  the  traditional  carboxylic  acid  anchoring  group,  electron  injection  of  boron-bound  BODIPY  is  faster  into  both  TiO2  and  SnO2.  In  addition,  binding  stability  is  improved  over  a  wide  range  of  pH.  Subsequent  photoelectrochemical  studies  using  a  sacrificial  electron  donor  showed  this  combined  dye  and  anchoring  group  maintained  photocurrent  with  good  stability  over  long-time  irradiation.  This  recently  discovered  binding  mode  of  BODIPY  shows  excellent  electron  injection  and  good  stability  over  time,  making  it  promising  for  future  investigations.  Finally,  for  a  functional  WS-DSPEC  photoanode  there  needs  to  be  both  an  effective  photosensitizer  and  catalyst  combined.  There  are  various  different  designs  for  these  photoanodes,  which  are  discussed  in  detail  in  this  thesis.  Three  different  arrangements  of  the  BODIPY  photosensitizer  and  an  iridium  water  oxidation  catalyst  were  synthesized  for  photocatalysis.  While  none  were  effective  for  water  oxidation,  lessons  were  extracted  regarding  the  charge  transport  properties  of  the  different  photoanodes  and  insights  into  to  future  designs.
■590    ▼aSchool  code:  0265.
■650  4▼aInorganic  chemistry.
■650  4▼aMaterials  science.
■650  4▼aAlternative  energy.
■650  4▼aPhysical  chemistry.
■653    ▼aSolar  radiation
■653    ▼aSemiconductors
■653    ▼aPhotoelectrochemical  cells
■653    ▼aCharge  transfer
■653    ▼aCarboxylic  acid
■690    ▼a0488
■690    ▼a0794
■690    ▼a0363
■690    ▼a0494
■71020▼aYale  University▼bChemistry.
■7730  ▼tDissertations  Abstracts  International▼g86-02B.
■790    ▼a0265
■791    ▼aPh.D.
■792    ▼a2024
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T17160171▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    詳細情報

    • 予約
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • 私のフォルダ
    資料
    登録番号 請求記号 場所 ステータス 情報を貸す
    TQ0031381 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    *ご予約は、借入帳でご利用いただけます。予約をするには、予約ボタンをクリックしてください

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치