본문

서브메뉴

Auditing the Reasoning Processes of Medical-Image AI.
Auditing the Reasoning Processes of Medical-Image AI.

상세정보

자료유형  
 학위논문
Control Number  
0017160318
International Standard Book Number  
9798382212128
Dewey Decimal Classification Number  
610
Main Entry-Personal Name  
DeGrave, Alex.
Publication, Distribution, etc. (Imprint  
[S.l.] : University of Washington., 2024
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2024
Physical Description  
94 p.
General Note  
Source: Dissertations Abstracts International, Volume: 85-10, Section: B.
General Note  
Advisor: Lee, Su-In.
Dissertation Note  
Thesis (Ph.D.)--University of Washington, 2024.
Summary, Etc.  
요약While medical artificial intelligence (AI) systems are achieving regulatory approval and clinical deployment across the world, the reasoning processes of these systems remain opaque to all stakeholders, including physicians, patients, regulators, and even the developers of these systems. Since the modern wave of medical AI relies on automatic learning of statistical patterns from large datasets-via 'machine-learning' techniques such as neural networks-they are prone to learning unexpected and potentially undesirable patterns, which may lead to pathological behavior in deployment. Here, we investigate the 'reasoning processes' of medical-image AI systems, that is, by forming a human-understandable, medically grounded conception of that mechanisms by which they generate predictions. Along the way, we develop new tools and frameworks as necessary to do so. Via these investigations, we uncover severe flaws in the reasoning of medical AI systems, and we build the first thorough, medically grounded picture of machine-learning-based medical-image AI reasoning processes.
Subject Added Entry-Topical Term  
Medicine.
Subject Added Entry-Topical Term  
Medical imaging.
Subject Added Entry-Topical Term  
Computer science.
Subject Added Entry-Topical Term  
Dermatology.
Index Term-Uncontrolled  
Medical-images
Index Term-Uncontrolled  
Machine learning
Index Term-Uncontrolled  
Radiology
Index Term-Uncontrolled  
Clinical deployment
Index Term-Uncontrolled  
Reasoning processes
Added Entry-Corporate Name  
University of Washington Computer Science and Engineering
Host Item Entry  
Dissertations Abstracts International. 85-10B.
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:655310

MARC

 008250224s2024        us  ||||||||||||||c||eng  d
■001000017160318
■00520250211150956
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798382212128
■035    ▼a(MiAaPQ)AAI30993617
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a610
■1001  ▼aDeGrave,  Alex.
■24510▼aAuditing  the  Reasoning  Processes  of  Medical-Image  AI.
■260    ▼a[S.l.]▼bUniversity  of  Washington.  ▼c2024
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2024
■300    ▼a94  p.
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  85-10,  Section:  B.
■500    ▼aAdvisor:  Lee,  Su-In.
■5021  ▼aThesis  (Ph.D.)--University  of  Washington,  2024.
■520    ▼aWhile  medical  artificial  intelligence  (AI)  systems  are  achieving  regulatory  approval  and  clinical  deployment  across  the  world,  the  reasoning  processes  of  these  systems  remain  opaque  to  all  stakeholders,  including  physicians,  patients,  regulators,  and  even  the  developers  of  these  systems.  Since  the  modern  wave  of  medical  AI  relies  on  automatic  learning  of  statistical  patterns  from  large  datasets-via  'machine-learning'  techniques  such  as  neural  networks-they  are  prone  to  learning  unexpected  and  potentially  undesirable  patterns,  which  may  lead  to  pathological  behavior  in  deployment.  Here,  we  investigate  the  'reasoning  processes'  of  medical-image  AI  systems,  that  is,  by  forming  a  human-understandable,  medically  grounded  conception  of  that  mechanisms  by  which  they  generate  predictions.  Along  the  way,  we  develop  new  tools  and  frameworks  as  necessary  to  do  so.  Via  these  investigations,  we  uncover  severe  flaws  in  the  reasoning  of  medical  AI  systems,  and  we  build  the  first  thorough,  medically  grounded  picture  of  machine-learning-based  medical-image  AI  reasoning  processes.
■590    ▼aSchool  code:  0250.
■650  4▼aMedicine.
■650  4▼aMedical  imaging.
■650  4▼aComputer  science.
■650  4▼aDermatology.
■653    ▼aMedical-images
■653    ▼aMachine  learning
■653    ▼aRadiology
■653    ▼aClinical  deployment
■653    ▼aReasoning  processes
■690    ▼a0564
■690    ▼a0574
■690    ▼a0984
■690    ▼a0800
■690    ▼a0757
■71020▼aUniversity  of  Washington▼bComputer  Science  and  Engineering.
■7730  ▼tDissertations  Abstracts  International▼g85-10B.
■790    ▼a0250
■791    ▼aPh.D.
■792    ▼a2024
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T17160318▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    Buch Status

    • Reservierung
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • Meine Mappe
    Sammlungen
    Registrierungsnummer callnumber Standort Verkehr Status Verkehr Info
    TQ0031332 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * Kredite nur für Ihre Daten gebucht werden. Wenn Sie buchen möchten Reservierungen, klicken Sie auf den Button.

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치