본문

서브메뉴

Released Piezoelectric Thin Films for Piezoelectric Micromachined Ultrasound Transducers (PMUT).
Released Piezoelectric Thin Films for Piezoelectric Micromachined Ultrasound Transducers (PMUT).

상세정보

자료유형  
 학위논문
Control Number  
0017164426
International Standard Book Number  
9798346383338
Dewey Decimal Classification Number  
620
Main Entry-Personal Name  
Tipsawat, Pannawit.
Publication, Distribution, etc. (Imprint  
[S.l.] : The Pennsylvania State University., 2024
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2024
Physical Description  
207 p.
General Note  
Source: Dissertations Abstracts International, Volume: 86-05, Section: B.
General Note  
Advisor: Trolier-McKinstry, Susan.
Dissertation Note  
Thesis (Ph.D.)--The Pennsylvania State University, 2024.
Summary, Etc.  
요약This thesis focuses on the exploration of released PZT thin films, from the fundamentals that govern the magnitude of the piezoelectric response to applications. Quantitative measurement of the effective longitudinal piezoelectric coefficient of partially released PZT thin films was conducted to provide a better understanding of declamping from the substrate. Partially released structures were employed in the development and optimization of piezoelectric micromachined ultrasound transducers (PMUT) phased arrays tailored for neuromodulation applications. Further steps in developing piezoelectric devices for neuromodulation applications involved investigating the PZT PMUT with a fully released structure to offer feasibility in flexible and conformable applications such as implantable ultrasound stimulation.The investigation of partially released PZT thin films was realized using the double beam laser interferometry technique to suppress the effect of substrate bending; such bending commonly inflates the values inferred from single beam laser interferometry. The partially released structures with 2 mol% Nb-doped Pb(Zr0.52Ti0.48)O3 thin film were fabricated using a two-step backside etching process with ZnO serving as both a sacrificial layer and the silicon deep reactive ion etch stop layer. This fabrication approach allowed the released boundary to be well-defined and provided a laser path for backside probing. Significant improvement in the effective longitudinal piezoelectric coefficient (d*33,f) was observed in the partially released structure, with the released structures exhibiting a 3-fold increase in d*33,f compared to clamped samples, reaching values of 420 ± 8 pm/V in the 75% released structure. This enhancement is attributed to the change in stress level, the reduction in mechanical constraints, and improved domain wall mobility in the released structures. The results confirm that substrate declamping can substantially elevate the piezoelectric performance of thin films, bringing them closer to that of bulk ceramics.Partially released PZT-based PMUT phased arrays on a silicon-on-insulator substrate were designed and fabricated. Utilizing a 1.5 µm thick 2 mol% Nb-doped Pb(Zr0.52Ti0.48)O thin film, a 32-element PMUT phased array was optimized for neuromodulation. The array was designed using k-Wave simulations to achieve a focal distance (F) of 20 mm and steering angles (θ_s) ranging from -60° to 60°. The rigid PMUT phased array was tested in a water tank and driven with 14.6 V unipolar pulses using appropriate time delays for beamforming and steering. The maximum peak-to-peak acoustic pressure from the phased array with beamforming was found to be 0.44 MPa at 1.4 MHz, with axial and lateral resolutions of 9.2 and 1 mm, respectively. The achievable acoustic intensity (I_SPPA = 1.29 W/cm2) achieved at low driving voltages underscores the potential of rigid PMUT arrays for low-intensity focused ultrasound stimulation.Fully flexible PMUT arrays were also explored to enable conformality to curved and complex surface structures such as the skull or brain membrane, aiming for potential implantable applications. The transition to flexible PMUTs involved fabricating these devices on polyimide substrates using a transfer and release method with a ZnO sacrificial layer. A critical aspect of this design was the incorporation of an electroplated Ni metal rigid support layer to optimize the operational resonance frequency, ensuring compatibility with the pitch required for effective beamforming. A rectangular prototype PMUT was demonstrated using a capacitor stack of Pt/PZT/Pt with a 1 µm thick 2 mol% Nb-doped Pb(Zr0.52Ti0.48)O3 thin film, deposited on a silicon substrate and patterned via plasma etching with an electroplated Ni hard mask. However, the design was prone to the high stress levels; the asymmetric structure led to stress concentrations and resulted in damaged devices after release. Challenges encountered included cracking and electrode delamination. To address the stress-related issues, the introduction of a compressive layer, such as SiO2, is proposed to counterbalance the stress levels. Additionally, adjusting the electrode coverage from 60% to 100% should reduce stress concentration at the edges of the electrodes, thereby mitigating the risk of cracking and peeling.This thesis represents significant findings on the piezoelectric response of released PZT structures and advancements in the design, fabrication, and application of PMUTs. The findings provide insights into both rigid and flexible device configurations, highlighting the potential for these technologies in developing next-generation implantable ultrasound stimulation devices. The detailed exploration of material properties, device architectures, and fabrication techniques contributes to a deeper understanding of the critical factors influencing PMUT performance.
Subject Added Entry-Topical Term  
Silicon.
Subject Added Entry-Topical Term  
Materials research.
Subject Added Entry-Topical Term  
Dielectric properties.
Subject Added Entry-Topical Term  
Microelectromechanical systems.
Subject Added Entry-Topical Term  
Materials science.
Subject Added Entry-Topical Term  
Interferometry.
Subject Added Entry-Topical Term  
Electrodes.
Subject Added Entry-Topical Term  
Ultrasonic transducers.
Subject Added Entry-Topical Term  
Science education.
Subject Added Entry-Topical Term  
Electric fields.
Subject Added Entry-Topical Term  
Plasma etching.
Subject Added Entry-Topical Term  
World War I.
Subject Added Entry-Topical Term  
Plating.
Subject Added Entry-Topical Term  
Stress concentration.
Subject Added Entry-Topical Term  
Thin films.
Subject Added Entry-Topical Term  
Optics.
Subject Added Entry-Topical Term  
Ultrasonic imaging.
Subject Added Entry-Topical Term  
Ceramics.
Subject Added Entry-Topical Term  
Micromachining.
Subject Added Entry-Topical Term  
Condensed matter physics.
Subject Added Entry-Topical Term  
Electrical engineering.
Subject Added Entry-Topical Term  
Electromagnetics.
Subject Added Entry-Topical Term  
Mechanical engineering.
Subject Added Entry-Topical Term  
Medical imaging.
Subject Added Entry-Topical Term  
Military history.
Subject Added Entry-Topical Term  
Military studies.
Added Entry-Corporate Name  
The Pennsylvania State University.
Host Item Entry  
Dissertations Abstracts International. 86-05B.
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:655254

MARC

 008250224s2024        us  ||||||||||||||c||eng  d
■001000017164426
■00520250211153001
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798346383338
■035    ▼a(MiAaPQ)AAI31631289
■035    ▼a(MiAaPQ)PennState20045pxt5175
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a620
■1001  ▼aTipsawat,  Pannawit.
■24510▼aReleased  Piezoelectric  Thin  Films  for  Piezoelectric  Micromachined  Ultrasound  Transducers  (PMUT).
■260    ▼a[S.l.]▼bThe  Pennsylvania  State  University.  ▼c2024
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2024
■300    ▼a207  p.
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  86-05,  Section:  B.
■500    ▼aAdvisor:  Trolier-McKinstry,  Susan.
■5021  ▼aThesis  (Ph.D.)--The  Pennsylvania  State  University,  2024.
■520    ▼aThis  thesis  focuses  on  the  exploration  of  released  PZT  thin  films,  from  the  fundamentals  that  govern  the  magnitude  of  the  piezoelectric  response  to  applications.  Quantitative  measurement  of  the  effective  longitudinal  piezoelectric  coefficient  of  partially  released  PZT  thin  films  was  conducted  to  provide  a  better  understanding  of  declamping  from  the  substrate.  Partially  released  structures  were  employed  in  the  development  and  optimization  of  piezoelectric  micromachined  ultrasound  transducers  (PMUT)  phased  arrays  tailored  for  neuromodulation  applications.  Further  steps  in  developing  piezoelectric  devices  for  neuromodulation  applications  involved  investigating  the  PZT  PMUT  with  a  fully  released  structure  to  offer  feasibility  in  flexible  and  conformable  applications  such  as  implantable  ultrasound  stimulation.The  investigation  of  partially  released  PZT  thin  films  was  realized  using  the  double  beam  laser  interferometry  technique  to  suppress  the  effect  of  substrate  bending;  such  bending  commonly  inflates  the  values  inferred  from  single  beam  laser  interferometry.  The  partially  released  structures  with  2  mol%  Nb-doped  Pb(Zr0.52Ti0.48)O3  thin  film  were  fabricated  using  a  two-step  backside  etching  process  with  ZnO  serving  as  both  a  sacrificial  layer  and  the  silicon  deep  reactive  ion  etch  stop  layer.  This  fabrication  approach  allowed  the  released  boundary  to  be  well-defined  and  provided  a  laser  path  for  backside  probing.  Significant  improvement  in  the  effective  longitudinal  piezoelectric  coefficient  (d*33,f)  was  observed  in  the  partially  released  structure,  with  the  released  structures  exhibiting  a  3-fold  increase  in  d*33,f  compared  to  clamped  samples,  reaching  values  of  420  ±  8  pm/V  in  the  75%  released  structure.  This  enhancement  is  attributed  to  the  change  in  stress  level,  the  reduction  in  mechanical  constraints,  and  improved  domain  wall  mobility  in  the  released  structures.  The  results  confirm  that  substrate  declamping  can  substantially  elevate  the  piezoelectric  performance  of  thin  films,  bringing  them  closer  to  that  of  bulk  ceramics.Partially  released  PZT-based  PMUT  phased  arrays  on  a  silicon-on-insulator  substrate  were  designed  and  fabricated.  Utilizing  a  1.5  µm  thick  2  mol%  Nb-doped  Pb(Zr0.52Ti0.48)O  thin  film,  a  32-element  PMUT  phased  array  was  optimized  for  neuromodulation.  The  array  was  designed  using  k-Wave  simulations  to  achieve  a  focal  distance  (F)  of  20  mm  and  steering  angles  (θ_s)  ranging  from  -60°  to  60°.  The  rigid  PMUT  phased  array  was  tested  in  a  water  tank  and  driven  with  14.6  V  unipolar  pulses  using  appropriate  time  delays  for  beamforming  and  steering.  The  maximum  peak-to-peak  acoustic  pressure  from  the  phased  array  with  beamforming  was  found  to  be  0.44  MPa  at  1.4  MHz,  with  axial  and  lateral  resolutions  of  9.2  and  1  mm,  respectively.  The  achievable  acoustic  intensity  (I_SPPA  =  1.29  W/cm2)  achieved  at  low  driving  voltages  underscores  the  potential  of  rigid  PMUT  arrays  for  low-intensity  focused  ultrasound  stimulation.Fully  flexible  PMUT  arrays  were  also  explored  to  enable  conformality  to  curved  and  complex  surface  structures  such  as  the  skull  or  brain  membrane,  aiming  for  potential  implantable  applications.  The  transition  to  flexible  PMUTs  involved  fabricating  these  devices  on  polyimide  substrates  using  a  transfer  and  release  method  with  a  ZnO  sacrificial  layer.  A  critical  aspect  of  this  design  was  the  incorporation  of  an  electroplated  Ni  metal  rigid  support  layer  to  optimize  the  operational  resonance  frequency,  ensuring  compatibility  with  the  pitch  required  for  effective  beamforming.  A  rectangular  prototype  PMUT  was  demonstrated  using  a  capacitor  stack  of  Pt/PZT/Pt  with  a  1  µm  thick  2  mol%  Nb-doped  Pb(Zr0.52Ti0.48)O3  thin  film,  deposited  on  a  silicon  substrate  and  patterned  via  plasma  etching  with  an  electroplated  Ni  hard  mask.  However,  the  design  was  prone  to  the  high  stress  levels;  the  asymmetric  structure  led  to  stress  concentrations  and  resulted  in  damaged  devices  after  release.  Challenges  encountered  included  cracking  and  electrode  delamination.  To  address  the  stress-related  issues,  the  introduction  of  a  compressive  layer,  such  as  SiO2,  is  proposed  to  counterbalance  the  stress  levels.  Additionally,  adjusting  the  electrode  coverage  from  60%  to  100%  should  reduce  stress  concentration  at  the  edges  of  the  electrodes,  thereby  mitigating  the  risk  of  cracking  and  peeling.This  thesis  represents  significant  findings  on  the  piezoelectric  response  of  released  PZT  structures  and  advancements  in  the  design,  fabrication,  and  application  of  PMUTs.  The  findings  provide  insights  into  both  rigid  and  flexible  device  configurations,  highlighting  the  potential  for  these  technologies  in  developing  next-generation  implantable  ultrasound  stimulation  devices.  The  detailed  exploration  of  material  properties,  device  architectures,  and  fabrication  techniques  contributes  to  a  deeper  understanding  of  the  critical  factors  influencing  PMUT  performance.
■590    ▼aSchool  code:  0176.
■650  4▼aSilicon.
■650  4▼aMaterials  research.
■650  4▼aDielectric  properties.
■650  4▼aMicroelectromechanical  systems.
■650  4▼aMaterials  science.
■650  4▼aInterferometry.
■650  4▼aElectrodes.
■650  4▼aUltrasonic  transducers.
■650  4▼aScience  education.
■650  4▼aElectric  fields.
■650  4▼aPlasma  etching.
■650  4▼aWorld  War  I.
■650  4▼aPlating.
■650  4▼aStress  concentration.
■650  4▼aThin  films.
■650  4▼aOptics.
■650  4▼aUltrasonic  imaging.
■650  4▼aCeramics.
■650  4▼aMicromachining.
■650  4▼aCondensed  matter  physics.
■650  4▼aElectrical  engineering.
■650  4▼aElectromagnetics.
■650  4▼aMechanical  engineering.
■650  4▼aMedical  imaging.
■650  4▼aMilitary  history.
■650  4▼aMilitary  studies.
■690    ▼a0752
■690    ▼a0794
■690    ▼a0714
■690    ▼a0611
■690    ▼a0544
■690    ▼a0607
■690    ▼a0548
■690    ▼a0574
■690    ▼a0722
■690    ▼a0750
■71020▼aThe  Pennsylvania  State  University.
■7730  ▼tDissertations  Abstracts  International▼g86-05B.
■790    ▼a0176
■791    ▼aPh.D.
■792    ▼a2024
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T17164426▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    詳細情報

    • 予約
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • 私のフォルダ
    資料
    登録番号 請求記号 場所 ステータス 情報を貸す
    TQ0031276 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    *ご予約は、借入帳でご利用いただけます。予約をするには、予約ボタンをクリックしてください

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치