본문

서브메뉴

Cold Sintering of Ceramic Matrix Composites for Varistors and Microwave Dielectric Substrates.
Cold Sintering of Ceramic Matrix Composites for Varistors and Microwave Dielectric Substrates.

상세정보

자료유형  
 학위논문
Control Number  
0017164435
International Standard Book Number  
9798346393108
Dewey Decimal Classification Number  
537.62
Main Entry-Personal Name  
Garcia, Javier Mena.
Publication, Distribution, etc. (Imprint  
[S.l.] : The Pennsylvania State University., 2024
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2024
Physical Description  
145 p.
General Note  
Source: Dissertations Abstracts International, Volume: 86-05, Section: B.
General Note  
Advisor: Randall, Clive A.
Dissertation Note  
Thesis (Ph.D.)--The Pennsylvania State University, 2024.
Summary, Etc.  
요약This dissertation presents a comprehensive investigation into the synthesis, characterization, and application of ceramic-polymer composites and ceramic matrix composites (CMC) through the cold sintering process. With a primary focus on understanding the relationship between the designed composites' microstructures and their physical properties, this research integrates the results and learnings from four integral studies to elucidate the multifaceted aspects of materials science and engineering.The initial study explores into the design of ceramic-polymer composites, integrating the ferroelectric co-polymer polyvinylidene fluoride-trifluoroethylene (PVDF-TrFE) at the grain boundaries of a semiconducting zinc oxide (ZnO) matrix. Through a synergistic approach encompassing electrical conductivity modeling, dielectric characterization, and transmission electron microscopy (TEM) investigation, the study unveils the pivotal role of PVDF-TrFE in modulating the electrical properties of the composite, with an average thickness of 3 nm of PVDF-TrFE at the grain boundaries of ZnO measured by TEM and confirmed by calculations based on the Maxwell-Wagner-Sillars (MWS) effect. The addition of only 2 vol.% of PVDF-TrFE was sufficient to improve the non-linear conductivity and enable the Fowler-Nordheim tunneling mechanism at high applied electric fields, with a low barrier height of qφB = 0.1 eV. The critical electric field per grain boundary to transition from Schottky thermionic emission at low electric fields to Fowler-Nordheim tunneling was identified at 2.6 V•nm-1.Subsequent investigations underscore pressing necessity for advanced dielectric substrates tailored to the demands of modern 5G and 6G communication technologies. Employing sodium molybdate (Na2Mo2O7, NMO) as the ceramic matrix and hexagonal boron nitride (hBN) as the filler, dense CMCs are fabricated to augment the thermal conductivity from 2 to 12 W•m-1K-1, and to improve the dielectric properties by decreasing the relative permittivity from 13 to 8, at 106 and 9-13 GHz frequencies, with the addition of 50 vol.% of hBN. The dielectric loss of the composites was lower than 8x10-4at microwave frequencies. The following exploration extends this paradigm by incorporating diamond as a filler, aiming to further enhance thermal conductivity while maintaining minimal dielectric loss, thus elucidating the potential of engineered CMCs as versatile microwave substrate materials.Integral to the thesis is an in-depth analysis of the densification process of the NMO ceramic matrix phase, cold sintered in conjunction with filler materials of hBN and micro diamond (md). Through examination of kinetics, mechanisms, and microstructural changes, including pressure solution creep and steady-state creep processes induced by applied stress and variation of temperatures, this study describes the densification behavior and underscores the transformative impact of filler materials on mechanical and thermal properties. A dilatometry study allowed to identify activation energies between 48 and 97 kJ/mol for the NMO, NMO-hBN and NMO-md samples, using the Woolfrey-Bannister method. Norton's equation was used to estimate activation energy of 36 kJ/mol for NMO and the NMO-md composites, in the isothermal region of the steady-state creep. Determination of n stress exponent was used to identify the creep mechanisms of diffusional transport (n~1) for NMO and sliding interfaces (n~2) for NMO-md composites.By synthesizing findings from these interconnected studies, this thesis contributes to a holistic understanding of CSP-derived composites, offering valuable insights into their potential applications across a spectrum of communication technologies and microwave substrate materials.
Subject Added Entry-Topical Term  
Dielectric properties.
Subject Added Entry-Topical Term  
Cold.
Subject Added Entry-Topical Term  
Thermal energy.
Subject Added Entry-Topical Term  
Grain boundaries.
Subject Added Entry-Topical Term  
Microstructure.
Subject Added Entry-Topical Term  
Densification.
Subject Added Entry-Topical Term  
Sintering.
Subject Added Entry-Topical Term  
Ceramics.
Subject Added Entry-Topical Term  
Composite materials.
Subject Added Entry-Topical Term  
Crystal structure.
Subject Added Entry-Topical Term  
Polymers.
Subject Added Entry-Topical Term  
Motivation.
Subject Added Entry-Topical Term  
Electric fields.
Subject Added Entry-Topical Term  
Zinc oxides.
Subject Added Entry-Topical Term  
Design.
Subject Added Entry-Topical Term  
Particle size.
Subject Added Entry-Topical Term  
Density.
Subject Added Entry-Topical Term  
Atoms & subatomic particles.
Subject Added Entry-Topical Term  
Atomic physics.
Subject Added Entry-Topical Term  
Electromagnetics.
Subject Added Entry-Topical Term  
Energy.
Subject Added Entry-Topical Term  
Materials science.
Subject Added Entry-Topical Term  
Polymer chemistry.
Added Entry-Corporate Name  
The Pennsylvania State University.
Host Item Entry  
Dissertations Abstracts International. 86-05B.
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:655251

MARC

 008250224s2024        us  ||||||||||||||c||eng  d
■001000017164435
■00520250211153002
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798346393108
■035    ▼a(MiAaPQ)AAI31631314
■035    ▼a(MiAaPQ)PennState20629jxm6487
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a537.62
■1001  ▼aGarcia,  Javier  Mena.
■24510▼aCold  Sintering  of  Ceramic  Matrix  Composites  for  Varistors  and  Microwave  Dielectric  Substrates.
■260    ▼a[S.l.]▼bThe  Pennsylvania  State  University.  ▼c2024
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2024
■300    ▼a145  p.
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  86-05,  Section:  B.
■500    ▼aAdvisor:  Randall,  Clive  A.
■5021  ▼aThesis  (Ph.D.)--The  Pennsylvania  State  University,  2024.
■520    ▼aThis  dissertation  presents  a  comprehensive  investigation  into  the  synthesis,  characterization,  and  application  of  ceramic-polymer  composites  and  ceramic  matrix  composites  (CMC)  through  the  cold  sintering  process.  With  a  primary  focus  on  understanding  the  relationship  between  the  designed  composites'  microstructures  and  their  physical  properties,  this  research  integrates  the  results  and  learnings  from  four  integral  studies  to  elucidate  the  multifaceted  aspects  of  materials  science  and  engineering.The  initial  study  explores  into  the  design  of  ceramic-polymer  composites,  integrating  the  ferroelectric  co-polymer  polyvinylidene  fluoride-trifluoroethylene  (PVDF-TrFE)  at  the  grain  boundaries  of  a  semiconducting  zinc  oxide  (ZnO)  matrix.  Through  a  synergistic  approach  encompassing  electrical  conductivity  modeling,  dielectric  characterization,  and  transmission  electron  microscopy  (TEM)  investigation,  the  study  unveils  the  pivotal  role  of  PVDF-TrFE  in  modulating  the  electrical  properties  of  the  composite,  with  an  average  thickness  of  3  nm  of  PVDF-TrFE  at  the  grain  boundaries  of  ZnO  measured  by  TEM  and  confirmed  by  calculations  based  on  the  Maxwell-Wagner-Sillars  (MWS)  effect.  The  addition  of  only  2  vol.%  of  PVDF-TrFE  was  sufficient  to  improve  the  non-linear  conductivity  and  enable  the  Fowler-Nordheim  tunneling  mechanism  at  high  applied  electric  fields,  with  a  low  barrier  height  of  qφB  =  0.1  eV.  The  critical  electric  field  per  grain  boundary  to  transition  from  Schottky  thermionic  emission  at  low  electric  fields  to  Fowler-Nordheim  tunneling  was  identified  at  2.6  V•nm-1.Subsequent  investigations  underscore  pressing  necessity  for  advanced  dielectric  substrates  tailored  to  the  demands  of  modern  5G  and  6G  communication  technologies.  Employing  sodium  molybdate  (Na2Mo2O7,  NMO)  as  the  ceramic  matrix  and  hexagonal  boron  nitride  (hBN)  as  the  filler,  dense  CMCs  are  fabricated  to  augment  the  thermal  conductivity  from  2  to  12  W•m-1K-1,  and  to  improve  the  dielectric  properties  by  decreasing  the  relative  permittivity  from  13  to  8,  at  106  and  9-13  GHz  frequencies,  with  the  addition  of  50  vol.%  of  hBN.  The  dielectric  loss  of  the  composites  was  lower  than  8x10-4at  microwave  frequencies.  The  following  exploration  extends  this  paradigm  by  incorporating  diamond  as  a  filler,  aiming  to  further  enhance  thermal  conductivity  while  maintaining  minimal  dielectric  loss,  thus  elucidating  the  potential  of  engineered  CMCs  as  versatile  microwave  substrate  materials.Integral  to  the  thesis  is  an  in-depth  analysis  of  the  densification  process  of  the  NMO  ceramic  matrix  phase,  cold  sintered  in  conjunction  with  filler  materials  of  hBN  and  micro  diamond  (md).  Through  examination  of  kinetics,  mechanisms,  and  microstructural  changes,  including  pressure  solution  creep  and  steady-state  creep  processes  induced  by  applied  stress  and  variation  of  temperatures,  this  study  describes  the  densification  behavior  and  underscores  the  transformative  impact  of  filler  materials  on  mechanical  and  thermal  properties.  A  dilatometry  study  allowed  to  identify  activation  energies  between  48  and  97  kJ/mol  for  the  NMO,  NMO-hBN  and  NMO-md  samples,  using  the  Woolfrey-Bannister  method.  Norton's  equation  was  used  to  estimate  activation  energy  of  36  kJ/mol  for  NMO  and  the  NMO-md  composites,  in  the  isothermal  region  of  the  steady-state  creep.  Determination  of  n  stress  exponent  was  used  to  identify  the  creep  mechanisms  of  diffusional  transport  (n~1)  for  NMO  and  sliding  interfaces  (n~2)  for  NMO-md  composites.By  synthesizing  findings  from  these  interconnected  studies,  this  thesis  contributes  to  a  holistic  understanding  of  CSP-derived  composites,  offering  valuable  insights  into  their  potential  applications  across  a  spectrum  of  communication  technologies  and  microwave  substrate  materials.
■590    ▼aSchool  code:  0176.
■650  4▼aDielectric  properties.
■650  4▼aCold.
■650  4▼aThermal  energy.
■650  4▼aGrain  boundaries.
■650  4▼aMicrostructure.
■650  4▼aDensification.
■650  4▼aSintering.
■650  4▼aCeramics.
■650  4▼aComposite  materials.
■650  4▼aCrystal  structure.
■650  4▼aPolymers.
■650  4▼aMotivation.
■650  4▼aElectric  fields.
■650  4▼aZinc  oxides.
■650  4▼aDesign.
■650  4▼aParticle  size.
■650  4▼aDensity.
■650  4▼aAtoms  &  subatomic  particles.
■650  4▼aAtomic  physics.
■650  4▼aElectromagnetics.
■650  4▼aEnergy.
■650  4▼aMaterials  science.
■650  4▼aPolymer  chemistry.
■690    ▼a0389
■690    ▼a0748
■690    ▼a0607
■690    ▼a0791
■690    ▼a0794
■690    ▼a0495
■71020▼aThe  Pennsylvania  State  University.
■7730  ▼tDissertations  Abstracts  International▼g86-05B.
■790    ▼a0176
■791    ▼aPh.D.
■792    ▼a2024
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T17164435▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    Info Détail de la recherche.

    • Réservation
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • My Folder
    Matériel
    Reg No. Call No. emplacement Status Lend Info
    TQ0031273 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * Les réservations sont disponibles dans le livre d'emprunt. Pour faire des réservations, S'il vous plaît cliquer sur le bouton de réservation

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치