본문

서브메뉴

Planning Under Uncertainty in Safety-Critical Systems.
Planning Under Uncertainty in Safety-Critical Systems.

상세정보

자료유형  
 학위논문
Control Number  
0017162189
International Standard Book Number  
9798384198765
Dewey Decimal Classification Number  
371.3
Main Entry-Personal Name  
Jamgochian, Arec Levon.
Publication, Distribution, etc. (Imprint  
[S.l.] : Stanford University., 2024
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2024
Physical Description  
122 p.
General Note  
Source: Dissertations Abstracts International, Volume: 86-03, Section: B.
General Note  
Advisor: Kochenderfer, Mykel.
Dissertation Note  
Thesis (Ph.D.)--Stanford University, 2024.
Summary, Etc.  
요약From warehouses and manufacturing lines to homes and offices, from roads and seas, to skies and space, autonomous systems promise to improve efficiency, unlock human potential, and explore new frontiers. Many autonomous systems already make decisions that impact our everyday lives. As technology continues to develop and the cost of compute continues to decrease, autonomous systems will continue integrating into society. However, a unifying necessity for safety-critical systems to deploy autonomously in the real world is the need to be able to reason about their environments and make good decisions to satisfy their objectives.For autonomous systems to be deployed successfully, it often does not suffice to plan deterministically, that is, assuming that everything will `go as planned` against a single string of outcomes. Rather, agents must reason about the uncertainty that can arise, either from inexact actuation or sensing, imperfect information, unclear objectives, unknown motives of other participants, or complex environments. These sources of uncertainty can significantly complicate autonomous decision-making and can ultimately lead to catastrophic errors. By explicitly reasoning about these sources of uncertainty, this thesis introduces new methods for planning safely against them.First, this thesis investigates methods that use data to overcome uncertainty in action outcomes and agent objectives. Specifically, we consider using human driving demonstrations alongside simulators to overcome objective uncertainty for autonomous driving in complex urban environments. Previous approaches that used simulators to help imitate human driving were typically limited to relatively simple scenarios. We introduce Safety-Aware Hierarchical Adversarial Imitation Learning (SHAIL), a method that scales safety-critical data-driven decision-making to complex problems through reliance on hierarchical decomposition and safety predictions. After building a simulator to test counterfactuals of real-world driving decisions, we demonstrate empirically that SHAIL can improve safety compared to other data-driven decision-making methods, especially in unseen driving scenarios.Next, we turn to safe planning under outcome and state uncertainty when models for those uncertainties are known a priori. Here, we impose safety through constraints on agent plans, modeling problems as constrained partially observable Markov decision processes (CPOMDPs). Approximate CPOMDP solutions are typically limited to small, discrete actions and observation spaces. We introduce algorithms that extend online search-based planning in CPOMDPs to domains with large or continuous state, action, and observation spaces by using methods that artificially limit the width of a search tree in unpromising areas and satisfy constraints using dual ascent. We empirically compare the effectiveness of our proposed algorithms on continuous CPOMDPs that model both toy and real-world safety-critical problems. In doing so, we demonstrate that CPOMDP planning can be effective in continuous domains.Unfortunately, the algorithms we introduce for safe online planning in continuous CPOMDPs are still restricted to relatively small problems. Fortunately, as noted for urban driving, many large planning problems can be decomposed hierarchically. In our final contribution, we introduce Constrained Options Belief Tree Search (COBeTS) to scale continuous CPOMDP planning to much larger problems with favorable hierarchical decompositions by planning over macro-actions (i.e. low-level controller options). We demonstrate COBeTS in several large, safety-critical, uncertain domains, showing that it can plan successfully while non-hierarchical baselines cannot. Importantly, we show that with constraint-satisfying macro-actions, COBeTS can guarantee safety regardless of planning time. In summary, our contributions improve planning safety in domains with quantifiable outcome, state, and/or objective uncertainty through novel applications of hierarchies and/or constraints.
Subject Added Entry-Topical Term  
Teaching methods.
Subject Added Entry-Topical Term  
Carbon sequestration.
Subject Added Entry-Topical Term  
Planning.
Subject Added Entry-Topical Term  
Autonomous vehicles.
Subject Added Entry-Topical Term  
Decision making.
Subject Added Entry-Topical Term  
Robots.
Subject Added Entry-Topical Term  
Decomposition.
Subject Added Entry-Topical Term  
Design.
Subject Added Entry-Topical Term  
Markov analysis.
Subject Added Entry-Topical Term  
Robotics.
Subject Added Entry-Topical Term  
Environmental engineering.
Subject Added Entry-Topical Term  
Transportation.
Subject Added Entry-Topical Term  
Pedagogy.
Added Entry-Corporate Name  
Stanford University.
Host Item Entry  
Dissertations Abstracts International. 86-03B.
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:655232

MARC

 008250224s2024        us  ||||||||||||||c||eng  d
■001000017162189
■00520250211151943
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798384198765
■035    ▼a(MiAaPQ)AAI31324649
■035    ▼a(MiAaPQ)Stanfordmj052kx8392
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a371.3
■1001  ▼aJamgochian,  Arec  Levon.
■24510▼aPlanning  Under  Uncertainty  in  Safety-Critical  Systems.
■260    ▼a[S.l.]▼bStanford  University.  ▼c2024
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2024
■300    ▼a122  p.
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  86-03,  Section:  B.
■500    ▼aAdvisor:  Kochenderfer,  Mykel.
■5021  ▼aThesis  (Ph.D.)--Stanford  University,  2024.
■520    ▼aFrom  warehouses  and  manufacturing  lines  to  homes  and  offices,  from  roads  and  seas,  to  skies  and  space,  autonomous  systems  promise  to  improve  efficiency,  unlock  human  potential,  and  explore  new  frontiers.  Many  autonomous  systems  already  make  decisions  that  impact  our  everyday  lives.  As  technology  continues  to  develop  and  the  cost  of  compute  continues  to  decrease,  autonomous  systems  will  continue  integrating  into  society.  However,  a  unifying  necessity  for  safety-critical  systems  to  deploy  autonomously  in  the  real  world  is  the  need  to  be  able  to  reason  about  their  environments  and  make  good  decisions  to  satisfy  their  objectives.For  autonomous  systems  to  be  deployed  successfully,  it  often  does  not  suffice  to  plan  deterministically,  that  is,  assuming  that  everything  will  `go  as  planned`  against  a  single  string  of  outcomes.  Rather,  agents  must  reason  about  the  uncertainty  that  can  arise,  either  from  inexact  actuation  or  sensing,  imperfect  information,  unclear  objectives,  unknown  motives  of  other  participants,  or  complex  environments.  These  sources  of  uncertainty  can  significantly  complicate  autonomous  decision-making  and  can  ultimately  lead  to  catastrophic  errors.  By  explicitly  reasoning  about  these  sources  of  uncertainty,  this  thesis  introduces  new  methods  for  planning  safely  against  them.First,  this  thesis  investigates  methods  that  use  data  to  overcome  uncertainty  in  action  outcomes  and  agent  objectives.  Specifically,  we  consider  using  human  driving  demonstrations  alongside  simulators  to  overcome  objective  uncertainty  for  autonomous  driving  in  complex  urban  environments.  Previous  approaches  that  used  simulators  to  help  imitate  human  driving  were  typically  limited  to  relatively  simple  scenarios.  We  introduce  Safety-Aware  Hierarchical  Adversarial  Imitation  Learning  (SHAIL),  a  method  that  scales  safety-critical  data-driven  decision-making  to  complex  problems  through  reliance  on  hierarchical  decomposition  and  safety  predictions.  After  building  a  simulator  to  test  counterfactuals  of  real-world  driving  decisions,  we  demonstrate  empirically  that  SHAIL  can  improve  safety  compared  to  other  data-driven  decision-making  methods,  especially  in  unseen  driving  scenarios.Next,  we  turn  to  safe  planning  under  outcome  and  state  uncertainty  when  models  for  those  uncertainties  are  known  a  priori.  Here,  we  impose  safety  through  constraints  on  agent  plans,  modeling  problems  as  constrained  partially  observable  Markov  decision  processes  (CPOMDPs).  Approximate  CPOMDP  solutions  are  typically  limited  to  small,  discrete  actions  and  observation  spaces.  We  introduce  algorithms  that  extend  online  search-based  planning  in  CPOMDPs  to  domains  with  large  or  continuous  state,  action,  and  observation  spaces  by  using  methods  that  artificially  limit  the  width  of  a  search  tree  in  unpromising  areas  and  satisfy  constraints  using  dual  ascent.  We  empirically  compare  the  effectiveness  of  our  proposed  algorithms  on  continuous  CPOMDPs  that  model  both  toy  and  real-world  safety-critical  problems.  In  doing  so,  we  demonstrate  that  CPOMDP  planning  can  be  effective  in  continuous  domains.Unfortunately,  the  algorithms  we  introduce  for  safe  online  planning  in  continuous  CPOMDPs  are  still  restricted  to  relatively  small  problems.  Fortunately,  as  noted  for  urban  driving,  many  large  planning  problems  can  be  decomposed  hierarchically.  In  our  final  contribution,  we  introduce  Constrained  Options  Belief  Tree  Search  (COBeTS)  to  scale  continuous  CPOMDP  planning  to  much  larger  problems  with  favorable  hierarchical  decompositions  by  planning  over  macro-actions  (i.e.  low-level  controller  options).  We  demonstrate  COBeTS  in  several  large,  safety-critical,  uncertain  domains,  showing  that  it  can  plan  successfully  while  non-hierarchical  baselines  cannot.  Importantly,  we  show  that  with  constraint-satisfying  macro-actions,  COBeTS  can  guarantee  safety  regardless  of  planning  time.  In  summary,  our  contributions  improve  planning  safety  in  domains  with  quantifiable  outcome,  state,  and/or  objective  uncertainty  through  novel  applications  of  hierarchies  and/or  constraints.
■590    ▼aSchool  code:  0212.
■650  4▼aTeaching  methods.
■650  4▼aCarbon  sequestration.
■650  4▼aPlanning.
■650  4▼aAutonomous  vehicles.
■650  4▼aDecision  making.
■650  4▼aRobots.
■650  4▼aDecomposition.
■650  4▼aDesign.
■650  4▼aMarkov  analysis.
■650  4▼aRobotics.
■650  4▼aEnvironmental  engineering.
■650  4▼aTransportation.
■650  4▼aPedagogy.
■690    ▼a0771
■690    ▼a0389
■690    ▼a0775
■690    ▼a0796
■690    ▼a0709
■690    ▼a0456
■71020▼aStanford  University.
■7730  ▼tDissertations  Abstracts  International▼g86-03B.
■790    ▼a0212
■791    ▼aPh.D.
■792    ▼a2024
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T17162189▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    Info Détail de la recherche.

    • Réservation
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • My Folder
    Matériel
    Reg No. Call No. emplacement Status Lend Info
    TQ0031254 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * Les réservations sont disponibles dans le livre d'emprunt. Pour faire des réservations, S'il vous plaît cliquer sur le bouton de réservation

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치