본문

서브메뉴

Data-Efficient Learning and Generalization for Industrial Robotic Systems.
Data-Efficient Learning and Generalization for Industrial Robotic Systems.

상세정보

자료유형  
 학위논문
Control Number  
0017161570
International Standard Book Number  
9798384449737
Dewey Decimal Classification Number  
629.8
Main Entry-Personal Name  
Wu, Zheng.
Publication, Distribution, etc. (Imprint  
[S.l.] : University of California, Berkeley., 2024
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2024
Physical Description  
112 p.
General Note  
Source: Dissertations Abstracts International, Volume: 86-04, Section: B.
General Note  
Advisor: Tomizuka, Masayoshi.
Dissertation Note  
Thesis (Ph.D.)--University of California, Berkeley, 2024.
Summary, Etc.  
요약Autonomous robots have swiftly revolutionized several industries, enhancing manufacturing processes by streamlining assembly lines for heightened efficiency, revolutionizing agriculture with automated planting and harvesting, and refining logistics through the optimization of warehousing and delivery systems. These advancements underscore the groundbreaking impact of robotics on productivity and innovation across a diverse range of sectors. However, the rapid advancement in autonomous robotics faces a significant challenge: the heavy dependency on massive data and the daunting task of generalizing learned behaviors to new tasks and environments. This challenge represents more than a mere technical obstacle; it is a critical bottleneck that constrains the widespread adoption and effectiveness of autonomous robots, stifling innovation and practical deployment across a myriad of industrial applications.In this dissertation, we study the problem of data-efficient learning and generalization for industrial autonomous robots. Our goal is to develop algorithms that enable robots to learn from limited data and generalize the learned behaviors to novel tasks and environments effectively. The core idea is to leverage proper task knowledge and assumptions, embedding them into the algorithmic designs to significantly enhance their data efficiency. Our research endeavors are dedicated to three principal aspects: data-efficient reward learning, data-efficient policy learning, and data-efficient policy generalization. These approaches are meticulously applied across a wide array of industrial scenarios, such as autonomous vehicles, robotic assembly, and robotic palletization, showcasing their versatility and effectiveness in enhancing robotic efficiency and adaptability in real-world applications.This dissertation unfolds in three distinct parts, offering a comprehensive examination of data-efficient learning and generalization for autonomous robots. Part I lays the foundation with an in-depth exploration of data-efficient reward learning, employing inverse reinforcement learning (Chapter 2) and representation learning (Chapter 3) to uncover efficient ways to infer reward signals from limited data. Part II shifts focus to the nuances of data-efficient policy learning. Chapter 4 introduces a data-efficient reinforcement learning (RL) policy specifically designed for robotic palletization, enhancing data efficiency by narrowing the exploration space via learned action space masking. In Chapter 5, we propose a novel skill representation method, namely motion primitives (MP), alongside a data-efficient framework for learning MP-based insertion skills directly from human demonstrations. Concluding with Part III, the dissertation advances into the realm of data-efficient policy generalization across diverse tasks. In Chapter 6, a novel zero-shot policy generalization approach is presented, capitalizing on the compositional structure of task representations to enable seamless adaptation to new tasks without the need for additional data.
Subject Added Entry-Topical Term  
Robotics.
Subject Added Entry-Topical Term  
Mechanical engineering.
Index Term-Uncontrolled  
Data-efficient
Index Term-Uncontrolled  
Generalization
Index Term-Uncontrolled  
Reinforcement learning
Index Term-Uncontrolled  
Learning
Index Term-Uncontrolled  
Autonomous robots
Added Entry-Corporate Name  
University of California, Berkeley Mechanical Engineering
Host Item Entry  
Dissertations Abstracts International. 86-04B.
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:655136

MARC

 008250224s2024        us  ||||||||||||||c||eng  d
■001000017161570
■00520250211151414
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798384449737
■035    ▼a(MiAaPQ)AAI31293239
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a629.8
■1001  ▼aWu,  Zheng.
■24510▼aData-Efficient  Learning  and  Generalization  for  Industrial  Robotic  Systems.
■260    ▼a[S.l.]▼bUniversity  of  California,  Berkeley.  ▼c2024
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2024
■300    ▼a112  p.
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  86-04,  Section:  B.
■500    ▼aAdvisor:  Tomizuka,  Masayoshi.
■5021  ▼aThesis  (Ph.D.)--University  of  California,  Berkeley,  2024.
■520    ▼aAutonomous  robots  have  swiftly  revolutionized  several  industries,  enhancing  manufacturing  processes  by  streamlining  assembly  lines  for  heightened  efficiency,  revolutionizing  agriculture  with  automated  planting  and  harvesting,  and  refining  logistics  through  the  optimization  of  warehousing  and  delivery  systems.  These  advancements  underscore  the  groundbreaking  impact  of  robotics  on  productivity  and  innovation  across  a  diverse  range  of  sectors.  However,  the  rapid  advancement  in  autonomous  robotics  faces  a  significant  challenge:  the  heavy  dependency  on  massive  data  and  the  daunting  task  of  generalizing  learned  behaviors  to  new  tasks  and  environments.  This  challenge  represents  more  than  a  mere  technical  obstacle;  it  is  a  critical  bottleneck  that  constrains  the  widespread  adoption  and  effectiveness  of  autonomous  robots,  stifling  innovation  and  practical  deployment  across  a  myriad  of  industrial  applications.In  this  dissertation,  we  study  the  problem  of  data-efficient  learning  and  generalization  for  industrial  autonomous  robots.  Our  goal  is  to  develop  algorithms  that  enable  robots  to  learn  from  limited  data  and  generalize  the  learned  behaviors  to  novel  tasks  and  environments  effectively.  The  core  idea  is  to  leverage  proper  task  knowledge  and  assumptions,  embedding  them  into  the  algorithmic  designs  to  significantly  enhance  their  data  efficiency.  Our  research  endeavors  are  dedicated  to  three  principal  aspects:  data-efficient  reward  learning,  data-efficient  policy  learning,  and  data-efficient  policy  generalization.  These  approaches  are  meticulously  applied  across  a  wide  array  of  industrial  scenarios,  such  as  autonomous  vehicles,  robotic  assembly,  and  robotic  palletization,  showcasing  their  versatility  and  effectiveness  in  enhancing  robotic  efficiency  and  adaptability  in  real-world  applications.This  dissertation  unfolds  in  three  distinct  parts,  offering  a  comprehensive  examination  of  data-efficient  learning  and  generalization  for  autonomous  robots.  Part  I  lays  the  foundation  with  an  in-depth  exploration  of  data-efficient  reward  learning,  employing  inverse  reinforcement  learning  (Chapter  2)  and  representation  learning  (Chapter  3)  to  uncover  efficient  ways  to  infer  reward  signals  from  limited  data.  Part  II  shifts  focus  to  the  nuances  of  data-efficient  policy  learning.  Chapter  4  introduces  a  data-efficient  reinforcement  learning  (RL)  policy  specifically  designed  for  robotic  palletization,  enhancing  data  efficiency  by  narrowing  the  exploration  space  via  learned  action  space  masking.  In  Chapter  5,  we  propose  a  novel  skill  representation  method,  namely  motion  primitives  (MP),  alongside  a  data-efficient  framework  for  learning  MP-based  insertion  skills  directly  from  human  demonstrations.  Concluding  with  Part  III,  the  dissertation  advances  into  the  realm  of  data-efficient  policy  generalization  across  diverse  tasks.  In  Chapter  6,  a  novel  zero-shot  policy  generalization  approach  is  presented,  capitalizing  on  the  compositional  structure  of  task  representations  to  enable  seamless  adaptation  to  new  tasks  without  the  need  for  additional  data.
■590    ▼aSchool  code:  0028.
■650  4▼aRobotics.
■650  4▼aMechanical  engineering.
■653    ▼aData-efficient
■653    ▼aGeneralization
■653    ▼aReinforcement  learning
■653    ▼aLearning
■653    ▼aAutonomous  robots
■690    ▼a0771
■690    ▼a0800
■690    ▼a0548
■71020▼aUniversity  of  California,  Berkeley▼bMechanical  Engineering.
■7730  ▼tDissertations  Abstracts  International▼g86-04B.
■790    ▼a0028
■791    ▼aPh.D.
■792    ▼a2024
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T17161570▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    פרט מידע

    • הזמנה
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • התיקיה שלי
    גשמי
    Reg No. Call No. מיקום מצב להשאיל מידע
    TQ0031158 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * הזמנות זמינים בספר ההשאלה. כדי להזמין, נא לחץ על כפתור ההזמנה

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치