본문

서브메뉴

Machine Learning and Statistical Approaches for Efficient Disease Screening.
Machine Learning and Statistical Approaches for Efficient Disease Screening.

상세정보

자료유형  
 학위논문
Control Number  
0017163723
International Standard Book Number  
9798342109321
Dewey Decimal Classification Number  
519
Main Entry-Personal Name  
Landolfi, Nicholas Charles.
Publication, Distribution, etc. (Imprint  
[S.l.] : Stanford University., 2024
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2024
Physical Description  
155 p.
General Note  
Source: Dissertations Abstracts International, Volume: 86-04, Section: B.
General Note  
Advisor: Lall, Sanjay;Sadigh, Dorsa.
Dissertation Note  
Thesis (Ph.D.)--Stanford University, 2024.
Summary, Etc.  
요약We study probabilistic models with algebraic group symmetry and associated algorithms. We are motivated by pooled testing, which is widely used to conserve resources when performing large-scale population screening of infectious diseases such as that caused by SARS-CoV-2. Looking forward, such protocols are also a promising route to increase public access to novel and expensive biological assays in areas like early cancer detection. Classical approaches, however, are based on single-parameter models of disease prevalence and justified under assumptions of independence. We analyze symmetric probabilistic models that allow for correlation in test statuses and accommodate side information. By leveraging the probabilistic symmetries, we give efficient algorithms for learning these models from data and computing the optimal testing designs. When applied to data from the COVID-19 pandemic, these methods indicate more efficient test designs and help explain the unexpectedly high empirical efficiency observed by the original investigators.
Subject Added Entry-Topical Term  
Linear programming.
Subject Added Entry-Topical Term  
Dynamic programming.
Subject Added Entry-Topical Term  
Medical screening.
Subject Added Entry-Topical Term  
Optimization techniques.
Subject Added Entry-Topical Term  
Visualization.
Subject Added Entry-Topical Term  
Orbits.
Subject Added Entry-Topical Term  
Symmetry.
Subject Added Entry-Topical Term  
COVID-19.
Subject Added Entry-Topical Term  
Computer science.
Added Entry-Corporate Name  
Stanford University.
Host Item Entry  
Dissertations Abstracts International. 86-04B.
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:655068

MARC

 008250224s2024        us  ||||||||||||||c||eng  d
■001000017163723
■00520250211152745
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798342109321
■035    ▼a(MiAaPQ)AAI31520277
■035    ▼a(MiAaPQ)Stanfordhb623pm4894
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a519
■1001  ▼aLandolfi,  Nicholas  Charles.
■24510▼aMachine  Learning  and  Statistical  Approaches  for  Efficient  Disease  Screening.
■260    ▼a[S.l.]▼bStanford  University.  ▼c2024
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2024
■300    ▼a155  p.
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  86-04,  Section:  B.
■500    ▼aAdvisor:  Lall,  Sanjay;Sadigh,  Dorsa.
■5021  ▼aThesis  (Ph.D.)--Stanford  University,  2024.
■520    ▼aWe  study  probabilistic  models  with  algebraic  group  symmetry  and  associated  algorithms.  We  are  motivated  by  pooled  testing,  which  is  widely  used  to  conserve  resources  when  performing  large-scale  population  screening  of  infectious  diseases  such  as  that  caused  by  SARS-CoV-2.  Looking  forward,  such  protocols  are  also  a  promising  route  to  increase  public  access  to  novel  and  expensive  biological  assays  in  areas  like  early  cancer  detection.  Classical  approaches,  however,  are  based  on  single-parameter  models  of  disease  prevalence  and  justified  under  assumptions  of  independence.  We  analyze  symmetric  probabilistic  models  that  allow  for  correlation  in  test  statuses  and  accommodate  side  information.  By  leveraging  the  probabilistic  symmetries,  we  give  efficient  algorithms  for  learning  these  models  from  data  and  computing  the  optimal  testing  designs.  When  applied  to  data  from  the  COVID-19  pandemic,  these  methods  indicate  more  efficient  test  designs  and  help  explain  the  unexpectedly  high  empirical  efficiency  observed  by  the  original  investigators.
■590    ▼aSchool  code:  0212.
■650  4▼aLinear  programming.
■650  4▼aDynamic  programming.
■650  4▼aMedical  screening.
■650  4▼aOptimization  techniques.
■650  4▼aVisualization.
■650  4▼aOrbits.
■650  4▼aSymmetry.
■650  4▼aCOVID-19.
■650  4▼aComputer  science.
■690    ▼a0984
■71020▼aStanford  University.
■7730  ▼tDissertations  Abstracts  International▼g86-04B.
■790    ▼a0212
■791    ▼aPh.D.
■792    ▼a2024
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T17163723▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    신착도서 더보기
    최근 3년간 통계입니다.

    소장정보

    • 예약
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • 나의폴더
    소장자료
    등록번호 청구기호 소장처 대출가능여부 대출정보
    TQ0030990 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * 대출중인 자료에 한하여 예약이 가능합니다. 예약을 원하시면 예약버튼을 클릭하십시오.

    해당 도서를 다른 이용자가 함께 대출한 도서

    관련도서

    관련 인기도서

    도서위치