본문

서브메뉴

Large Eddy Simulations of Aircraft Icing Aerodynamics.
Large Eddy Simulations of Aircraft Icing Aerodynamics.

상세정보

자료유형  
 학위논문
Control Number  
0017163762
International Standard Book Number  
9798342111690
Dewey Decimal Classification Number  
600
Main Entry-Personal Name  
Bornhoft, Brett.
Publication, Distribution, etc. (Imprint  
[S.l.] : Stanford University., 2024
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2024
Physical Description  
163 p.
General Note  
Source: Dissertations Abstracts International, Volume: 86-04, Section: B.
General Note  
Advisor: Moin, Parviz.
Dissertation Note  
Thesis (Ph.D.)--Stanford University, 2024.
Summary, Etc.  
요약Predicting the aerodynamic performance of aircraft in icing conditions is crucial for ensuring flight safety. Modeling icing and its effect on aerodynamics has recently garnered attention in academia and industry due to the changes to the Code of Federal Regulations (CFR) in 2007 and 2014. The changes state that the certification of transport-category airplanes requires the same handling/performance in both icing and non-icing conditions. This has motivated airplane designers to include icing effects in the first stage of the design process. The accurate prediction of the effects of ice shapes on the aerodynamic performance of airfoils and wings is considered an industry gap that we address in this dissertation (Mauery et al., 2021).Encouraged by recent studies using large eddy simulations (LES) that demonstrate the ability to predict stall characteristics on full aircraft with smooth wings at an affordable cost (Goc et al., 2021), this dissertation applies this methodology to icing conditions. Using laser-scanned, detailed representations of the icing geometries, wall-modeled LES (WMLES) calculations are conducted to compare integrated loads against experimental measurements in a variety of icing conditions, including early-time glaze, early-time rime, streamwise, horn, and spanwise ridge ice formations. These ice geometries, mounted to a NACA23012 airfoil, span the space of ice shape types as described in (Bragg et al., 2005). Good agreement is achieved for the early-time glaze, streamwise, horn, and spanwise ridge ice geometries. At low angles of attack, reduced span representations were adequate to capture the aerodynamic quantities of interest (lift, drag, moments, and pressure distributions), but at high angles of attack (at and beyond the stall angle), it was shown that using larger spanwise extents is necessary for achieving an accurate representation of the aerodynamic performance coefficients. In contrast to the other geometries, the rime ice geometry simulations showed inaccurate predictions of the quantities of interest. This is attributed to the resolution of the roughness elements, which was completely sub-grid at the resolutions tested. To address this issue, a new roughness wall model is developed.For a turbulent rough-wall flow, it is known that the outer layer of a turbulent boundary layer is independent of wall roughness effects except in the roughness's role in setting both the friction velocity and boundary layer thickness (Jimenez, 2004; Kadivar et al., 2021). Therefore, to appropriately model these effects, a database of direct numerical simulations (DNS) of rough-wall turbulent channel flows is constructed and used to parameterize the rough-wall turbulent boundary layer using three roughness parameters: the root-mean-square roughness height, the surface effective slope, and its skewness. From this parameterization, we develop and introduce a velocity transformation for rough-wall turbulent flows and apply it as a modification to the equilibrium wall model (EQWM). This new wall model is then tested in both a turbulent channel flow and the early-time rime ice geometry. In both cases, we observe large improvements in both local quantities, such as velocity profiles, but also in integrated quantities, such as lift and drag, when augmenting the EQWM with the newly obtained roughness velocity transformation.
Subject Added Entry-Topical Term  
Friction.
Subject Added Entry-Topical Term  
Aircraft.
Subject Added Entry-Topical Term  
Aeronautics.
Subject Added Entry-Topical Term  
Viscosity.
Subject Added Entry-Topical Term  
Reynolds number.
Subject Added Entry-Topical Term  
Geometry.
Subject Added Entry-Topical Term  
Mechanical engineering.
Subject Added Entry-Topical Term  
Shear stress.
Subject Added Entry-Topical Term  
Aerospace engineering.
Subject Added Entry-Topical Term  
Fluid mechanics.
Added Entry-Corporate Name  
Stanford University.
Host Item Entry  
Dissertations Abstracts International. 86-04B.
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:655055

MARC

 008250224s2024        us  ||||||||||||||c||eng  d
■001000017163762
■00520250211152750
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798342111690
■035    ▼a(MiAaPQ)AAI31520345
■035    ▼a(MiAaPQ)Stanfordyh160kg7422
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a600
■1001  ▼aBornhoft,  Brett.
■24510▼aLarge  Eddy  Simulations  of  Aircraft  Icing  Aerodynamics.
■260    ▼a[S.l.]▼bStanford  University.  ▼c2024
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2024
■300    ▼a163  p.
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  86-04,  Section:  B.
■500    ▼aAdvisor:  Moin,  Parviz.
■5021  ▼aThesis  (Ph.D.)--Stanford  University,  2024.
■520    ▼aPredicting  the  aerodynamic  performance  of  aircraft  in  icing  conditions  is  crucial  for  ensuring  flight  safety.  Modeling  icing  and  its  effect  on  aerodynamics  has  recently  garnered  attention  in  academia  and  industry  due  to  the  changes  to  the  Code  of  Federal  Regulations  (CFR)  in  2007  and  2014.  The  changes  state  that  the  certification  of  transport-category  airplanes  requires  the  same  handling/performance  in  both  icing  and  non-icing  conditions.  This  has  motivated  airplane  designers  to  include  icing  effects  in  the  first  stage  of  the  design  process.  The  accurate  prediction  of  the  effects  of  ice  shapes  on  the  aerodynamic  performance  of  airfoils  and  wings  is  considered  an  industry  gap  that  we  address  in  this  dissertation  (Mauery  et  al.,  2021).Encouraged  by  recent  studies  using  large  eddy  simulations  (LES)  that  demonstrate  the  ability  to  predict  stall  characteristics  on  full  aircraft  with  smooth  wings  at  an  affordable  cost  (Goc  et  al.,  2021),  this  dissertation  applies  this  methodology  to  icing  conditions.  Using  laser-scanned,  detailed  representations  of  the  icing  geometries,  wall-modeled  LES  (WMLES)  calculations  are  conducted  to  compare  integrated  loads  against  experimental  measurements  in  a  variety  of  icing  conditions,  including  early-time  glaze,  early-time  rime,  streamwise,  horn,  and  spanwise  ridge  ice  formations.  These  ice  geometries,  mounted  to  a  NACA23012  airfoil,  span  the  space  of  ice  shape  types  as  described  in  (Bragg  et  al.,  2005).  Good  agreement  is  achieved  for  the  early-time  glaze,  streamwise,  horn,  and  spanwise  ridge  ice  geometries.  At  low  angles  of  attack,  reduced  span  representations  were  adequate  to  capture  the  aerodynamic  quantities  of  interest  (lift,  drag,  moments,  and  pressure  distributions),  but  at  high  angles  of  attack  (at  and  beyond  the  stall  angle),  it  was  shown  that  using  larger  spanwise  extents  is  necessary  for  achieving  an  accurate  representation  of  the  aerodynamic  performance  coefficients.  In  contrast  to  the  other  geometries,  the  rime  ice  geometry  simulations  showed  inaccurate  predictions  of  the  quantities  of  interest.  This  is  attributed  to  the  resolution  of  the  roughness  elements,  which  was  completely  sub-grid  at  the  resolutions  tested.  To  address  this  issue,  a  new  roughness  wall  model  is  developed.For  a  turbulent  rough-wall  flow,  it  is  known  that  the  outer  layer  of  a  turbulent  boundary  layer  is  independent  of  wall  roughness  effects  except  in  the  roughness's  role  in  setting  both  the  friction  velocity  and  boundary  layer  thickness  (Jimenez,  2004;  Kadivar  et  al.,  2021).  Therefore,  to  appropriately  model  these  effects,  a  database  of  direct  numerical  simulations  (DNS)  of  rough-wall  turbulent  channel  flows  is  constructed  and  used  to  parameterize  the  rough-wall  turbulent  boundary  layer  using  three  roughness  parameters:  the  root-mean-square  roughness  height,  the  surface  effective  slope,  and  its  skewness.  From  this  parameterization,  we  develop  and  introduce  a  velocity  transformation  for  rough-wall  turbulent  flows  and  apply  it  as  a  modification  to  the  equilibrium  wall  model  (EQWM).  This  new  wall  model  is  then  tested  in  both  a  turbulent  channel  flow  and  the  early-time  rime  ice  geometry.  In  both  cases,  we  observe  large  improvements  in  both  local  quantities,  such  as  velocity  profiles,  but  also  in  integrated  quantities,  such  as  lift  and  drag,  when  augmenting  the  EQWM  with  the  newly  obtained  roughness  velocity  transformation.
■590    ▼aSchool  code:  0212.
■650  4▼aFriction.
■650  4▼aAircraft.
■650  4▼aAeronautics.
■650  4▼aViscosity.
■650  4▼aReynolds  number.
■650  4▼aGeometry.
■650  4▼aMechanical  engineering.
■650  4▼aShear  stress.
■650  4▼aAerospace  engineering.
■650  4▼aFluid  mechanics.
■690    ▼a0548
■690    ▼a0538
■690    ▼a0204
■71020▼aStanford  University.
■7730  ▼tDissertations  Abstracts  International▼g86-04B.
■790    ▼a0212
■791    ▼aPh.D.
■792    ▼a2024
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T17163762▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    פרט מידע

    • הזמנה
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • התיקיה שלי
    גשמי
    Reg No. Call No. מיקום מצב להשאיל מידע
    TQ0030977 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * הזמנות זמינים בספר ההשאלה. כדי להזמין, נא לחץ על כפתור ההזמנה

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치