본문

서브메뉴

Generative AI for Music and Audio.
Generative AI for Music and Audio.

상세정보

자료유형  
 학위논문
Control Number  
0017161606
International Standard Book Number  
9798383196502
Dewey Decimal Classification Number  
004
Main Entry-Personal Name  
Dong, Hao-Wen.
Publication, Distribution, etc. (Imprint  
[S.l.] : University of California, San Diego., 2024
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2024
Physical Description  
154 p.
General Note  
Source: Dissertations Abstracts International, Volume: 86-01, Section: B.
General Note  
Advisor: Berg-Kirkpatrick, Taylor;McAuley, Julian.
Dissertation Note  
Thesis (Ph.D.)--University of California, San Diego, 2024.
Summary, Etc.  
요약Generative AI has been transforming the way we interact with technology and consume content. In the next decade, AI technology will reshape how we create audio content in various media, including music, theater, films, games, podcasts, and short videos. In this dissertation, I introduce the three main directions of my research centered around generative AI for music and audio: 1) multitrack music generation, 2) assistive music creation tools, and 3) multimodal learning for audio and music. Through my research, I aim to answer the following two fundamental questions: 1) How can AI help professionals or amateurs create music and audio content? 2) Can AI learn to create music in a way similar to how humans learn music? My long-term goal is to lower the barrier of entry for music composition and democratize audio content creation.
Subject Added Entry-Topical Term  
Computer science.
Subject Added Entry-Topical Term  
Music.
Index Term-Uncontrolled  
Audio synthesis
Index Term-Uncontrolled  
Deep learning
Index Term-Uncontrolled  
Machine learning
Index Term-Uncontrolled  
Multimodal learning
Index Term-Uncontrolled  
Music generation
Added Entry-Corporate Name  
University of California, San Diego Computer Science and Engineering
Host Item Entry  
Dissertations Abstracts International. 86-01B.
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:655010

MARC

 008250224s2024        us  ||||||||||||||c||eng  d
■001000017161606
■00520250211151420
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798383196502
■035    ▼a(MiAaPQ)AAI31294104
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a004
■1001  ▼aDong,  Hao-Wen.
■24510▼aGenerative  AI  for  Music  and  Audio.
■260    ▼a[S.l.]▼bUniversity  of  California,  San  Diego.  ▼c2024
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2024
■300    ▼a154  p.
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  86-01,  Section:  B.
■500    ▼aAdvisor:  Berg-Kirkpatrick,  Taylor;McAuley,  Julian.
■5021  ▼aThesis  (Ph.D.)--University  of  California,  San  Diego,  2024.
■520    ▼aGenerative  AI  has  been  transforming  the  way  we  interact  with  technology  and  consume  content.  In  the  next  decade,  AI  technology  will  reshape  how  we  create  audio  content  in  various  media,  including  music,  theater,  films,  games,  podcasts,  and  short  videos.  In  this  dissertation,  I  introduce  the  three  main  directions  of  my  research  centered  around  generative  AI  for  music  and  audio:  1)  multitrack  music  generation,  2)  assistive  music  creation  tools,  and  3)  multimodal  learning  for  audio  and  music.  Through  my  research,  I  aim  to  answer  the  following  two  fundamental  questions:  1)  How  can  AI  help  professionals  or  amateurs  create  music  and  audio  content?  2)  Can  AI  learn  to  create  music  in  a  way  similar  to  how  humans  learn  music?  My  long-term  goal  is  to  lower  the  barrier  of  entry  for  music  composition  and  democratize  audio  content  creation.
■590    ▼aSchool  code:  0033.
■650  4▼aComputer  science.
■650  4▼aMusic.
■653    ▼aAudio  synthesis
■653    ▼aDeep  learning
■653    ▼aMachine  learning
■653    ▼aMultimodal  learning
■653    ▼aMusic  generation
■690    ▼a0984
■690    ▼a0800
■690    ▼a0413
■71020▼aUniversity  of  California,  San  Diego▼bComputer  Science  and  Engineering.
■7730  ▼tDissertations  Abstracts  International▼g86-01B.
■790    ▼a0033
■791    ▼aPh.D.
■792    ▼a2024
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T17161606▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    詳細情報

    • 予約
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • 私のフォルダ
    資料
    登録番号 請求記号 場所 ステータス 情報を貸す
    TQ0030932 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    *ご予約は、借入帳でご利用いただけます。予約をするには、予約ボタンをクリックしてください

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치