본문

서브메뉴

Investigating Fusion Machinery in G Protein-Coupled Receptor Exocytosis.
Investigating Fusion Machinery in G Protein-Coupled Receptor Exocytosis.

상세정보

자료유형  
 학위논문
Control Number  
0017164525
International Standard Book Number  
9798384045458
Dewey Decimal Classification Number  
574
Main Entry-Personal Name  
Chen, Hao.
Publication, Distribution, etc. (Imprint  
[S.l.] : University of Michigan., 2024
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2024
Physical Description  
124 p.
General Note  
Source: Dissertations Abstracts International, Volume: 86-04, Section: B.
General Note  
Advisor: Puthenveedu, Manojkumar A.
Dissertation Note  
Thesis (Ph.D.)--University of Michigan, 2024.
Summary, Etc.  
요약Vesicle fusion at the plasma membrane plays an essential role in the release of secretory molecules such as neurotransmitters and in the exocytosis of surface proteins such as GPCRs. For neurotransmitter release, vesicle fusion is mediated by a multi-protein machinery including the SNARE complex consisting of vesicle-localized v-SNAREs, called VAMPs, and their cognate tSNAREs. Surprisingly, in contrast to the well-studied neurotransmitter release, it is largely unclear how fusion machinery is involved in GPCR exocytosis. GPCRs are signal-transducing receptors that sense and respond to extracellular stimuli. To allow for adaptive responses to the everchanging extracellular environment, the trafficking of GPCRs is strictly regulated. We sought to investigate the missing role fusion machinery plays in GPCR exocytosis by hypothesizing that there might be subtype-dependent specificity of v-SNAREs in the exocytosis of different GPCRs. In this dissertation, we focused on three receptors including two prototypical GPCRs, MOR and B2AR, and a non-GPCR trafficking model TfR. Evidence has shown that these receptors undergo distinct exocytic pathways.First, we examined the specificity of VAMP2, a prototypical v-SNARE known to mediate exocytotic vesicle fusion, in GPCR recycling. Using high-speed multi-channel microscopy to visualize VAMP2 and receptors in fusion events simultaneously, we found that VAMP2 was preferentially enriched in vesicles that mediated MOR recycling but not B2AR and TfR. VAMP2 depletion significantly decreased the recycling capacity of MOR on both single cell and population levels and from a cell model where VAMP2 was expressed ectopically to neurons where VAMP2  was expressed endogenously. By contrast, the recycling of B2AR and TfR were not affected by VAMP2 depletion. Interestingly, VAMP2 showed similar subcellular localization on MOR- and B2AR-containing endosomes, suggesting that VAMP2 and MOR were co-packaged into vesicles from the same endosomes that also contained other receptors. These results indicated that VAMP2 was cargo-selective and GPCRs might utilize distinct SNARE assemblies for vesicle fusion.Next, we sought to address whether B2AR depended on a v-SNARE other than VAMP2 for recycling. We examined B2AR recycling under the depletion of VAMP4 or VAMP7 and found neither of them was required. VAMP1 and VAMP3 were also excluded due to their lack of baseline expression. We concluded that there might not be an exclusive v-SNARE involved in B2AR recycling.Finally, we investigated the underlying mechanism leading to VAMP2's cargo-selectivity by hypothesizing that VAMP2 might possess an unknown sorting sequence through which it was co-sorted to endosomal subdomains alongside MOR. Through a series of microscopy studies, we found VAMP2 showed a sub-endosomal localization distinct from VAMP7. To follow up on our results of VAMP2's MOR-selectivity, we generated VAMP2 truncation mutants and studied their involvement in MOR recycling. Interestingly, both the N-terminus (V2N) and SNARE motif (V2S) of VAMP2 were required for the MOR-selectivity. By studying chimeric VAMP7 transplanted with VAMP2's protein sequences, we found that although V2N alone was sufficient to transform VAMP7's sorting, full transformation only occurred when V2S was also transplanted. Moreover, V2S was required to maintain VAMP2's stable surface localization. These data indicated that V2N and V2S played critical but distinct roles in the sorting and trafficking of VAMP2. Together, our results revealed a previously unclear mechanism in GPCR exocytosis and demonstrated another layer of regulation on GPCR trafficking. Moreover, our results provided evidence to a novel mechanism of v-SNARE endosomal sorting and contributed to an improved understanding of cellular trafficking. 
Subject Added Entry-Topical Term  
Cellular biology.
Subject Added Entry-Topical Term  
Pharmacology.
Subject Added Entry-Topical Term  
Molecular biology.
Subject Added Entry-Topical Term  
Biochemistry.
Index Term-Uncontrolled  
G protein-coupled receptors (GPCRs)
Index Term-Uncontrolled  
Exocytosis
Index Term-Uncontrolled  
Fusion machinery
Index Term-Uncontrolled  
SNARE proteins
Index Term-Uncontrolled  
Vesicular trafficking
Index Term-Uncontrolled  
Microscopy
Added Entry-Corporate Name  
University of Michigan Pharmacology
Host Item Entry  
Dissertations Abstracts International. 86-04B.
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:654947

MARC

 008250224s2024        us  ||||||||||||||c||eng  d
■001000017164525
■00520250211153013
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798384045458
■035    ▼a(MiAaPQ)AAI31631481
■035    ▼a(MiAaPQ)umichrackham005837
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a574
■1001  ▼aChen,  Hao.
■24510▼aInvestigating  Fusion  Machinery  in  G  Protein-Coupled  Receptor  Exocytosis.
■260    ▼a[S.l.]▼bUniversity  of  Michigan.  ▼c2024
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2024
■300    ▼a124  p.
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  86-04,  Section:  B.
■500    ▼aAdvisor:  Puthenveedu,  Manojkumar  A.
■5021  ▼aThesis  (Ph.D.)--University  of  Michigan,  2024.
■520    ▼aVesicle  fusion  at  the  plasma  membrane  plays  an  essential  role  in  the  release  of  secretory  molecules  such  as  neurotransmitters  and  in  the  exocytosis  of  surface  proteins  such  as  GPCRs.  For  neurotransmitter  release,  vesicle  fusion  is  mediated  by  a  multi-protein  machinery  including  the  SNARE  complex  consisting  of  vesicle-localized  v-SNAREs,  called  VAMPs,  and  their  cognate  tSNAREs.  Surprisingly,  in  contrast  to  the  well-studied  neurotransmitter  release,  it  is  largely  unclear  how  fusion  machinery  is  involved  in  GPCR  exocytosis.  GPCRs  are  signal-transducing  receptors  that  sense  and  respond  to  extracellular  stimuli.  To  allow  for  adaptive  responses  to  the  everchanging  extracellular  environment,  the  trafficking  of  GPCRs  is  strictly  regulated.  We  sought  to  investigate  the  missing  role  fusion  machinery  plays  in  GPCR  exocytosis  by  hypothesizing  that  there  might  be  subtype-dependent  specificity  of  v-SNAREs  in  the  exocytosis  of  different  GPCRs.  In  this  dissertation,  we  focused  on  three  receptors  including  two  prototypical  GPCRs,  MOR  and  B2AR,  and  a  non-GPCR  trafficking  model  TfR.  Evidence  has  shown  that  these  receptors  undergo  distinct  exocytic  pathways.First,  we  examined  the  specificity  of  VAMP2,  a  prototypical  v-SNARE  known  to  mediate  exocytotic  vesicle  fusion,  in  GPCR  recycling.  Using  high-speed  multi-channel  microscopy  to  visualize  VAMP2  and  receptors  in  fusion  events  simultaneously,  we  found  that  VAMP2  was  preferentially  enriched  in  vesicles  that  mediated  MOR  recycling  but  not  B2AR  and  TfR.  VAMP2  depletion  significantly  decreased  the  recycling  capacity  of  MOR  on  both  single  cell  and  population  levels  and  from  a  cell  model  where  VAMP2  was  expressed  ectopically  to  neurons  where  VAMP2  was  expressed  endogenously.  By  contrast,  the  recycling  of  B2AR  and  TfR  were  not  affected  by  VAMP2  depletion.  Interestingly,  VAMP2  showed  similar  subcellular  localization  on  MOR-  and  B2AR-containing  endosomes,  suggesting  that  VAMP2  and  MOR  were  co-packaged  into  vesicles  from  the  same  endosomes  that  also  contained  other  receptors.  These  results  indicated  that  VAMP2  was  cargo-selective  and  GPCRs  might  utilize  distinct  SNARE  assemblies  for  vesicle  fusion.Next,  we  sought  to  address  whether  B2AR  depended  on  a  v-SNARE  other  than  VAMP2  for  recycling.  We  examined  B2AR  recycling  under  the  depletion  of  VAMP4  or  VAMP7  and  found  neither  of  them  was  required.  VAMP1  and  VAMP3  were  also  excluded  due  to  their  lack  of  baseline  expression.  We  concluded  that  there  might  not  be  an  exclusive  v-SNARE  involved  in  B2AR  recycling.Finally,  we  investigated  the  underlying  mechanism  leading  to  VAMP2's  cargo-selectivity  by  hypothesizing  that  VAMP2  might  possess  an  unknown  sorting  sequence  through  which  it  was  co-sorted  to  endosomal  subdomains  alongside  MOR.  Through  a  series  of  microscopy  studies,  we  found  VAMP2  showed  a  sub-endosomal  localization  distinct  from  VAMP7.  To  follow  up  on  our  results  of  VAMP2's  MOR-selectivity,  we  generated  VAMP2  truncation  mutants  and  studied  their  involvement  in  MOR  recycling.  Interestingly,  both  the  N-terminus  (V2N)  and  SNARE  motif  (V2S)  of  VAMP2  were  required  for  the  MOR-selectivity.  By  studying  chimeric  VAMP7  transplanted  with  VAMP2's  protein  sequences,  we  found  that  although  V2N  alone  was  sufficient  to  transform  VAMP7's  sorting,  full  transformation  only  occurred  when  V2S  was  also  transplanted.  Moreover,  V2S  was  required  to  maintain  VAMP2's  stable  surface  localization.  These  data  indicated  that  V2N  and  V2S  played  critical  but  distinct  roles  in  the  sorting  and  trafficking  of  VAMP2. Together,  our  results  revealed  a  previously  unclear  mechanism  in  GPCR  exocytosis  and  demonstrated  another  layer  of  regulation  on  GPCR  trafficking.  Moreover,  our  results  provided evidence  to  a  novel  mechanism  of  v-SNARE  endosomal  sorting  and  contributed  to  an  improved  understanding  of  cellular  trafficking. 
■590    ▼aSchool  code:  0127.
■650  4▼aCellular  biology.
■650  4▼aPharmacology.
■650  4▼aMolecular  biology.
■650  4▼aBiochemistry.
■653    ▼aG  protein-coupled  receptors  (GPCRs)
■653    ▼aExocytosis
■653    ▼aFusion  machinery
■653    ▼aSNARE  proteins
■653    ▼aVesicular  trafficking
■653    ▼aMicroscopy
■690    ▼a0379
■690    ▼a0307
■690    ▼a0419
■690    ▼a0487
■71020▼aUniversity  of  Michigan▼bPharmacology.
■7730  ▼tDissertations  Abstracts  International▼g86-04B.
■790    ▼a0127
■791    ▼aPh.D.
■792    ▼a2024
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T17164525▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    高级搜索信息

    • 预订
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • 我的文件夹
    材料
    注册编号 呼叫号码. 收藏 状态 借信息.
    TQ0030869 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    *保留在借用的书可用。预订,请点击预订按钮

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치