본문

서브메뉴

Separate and Integral Effect Experiments of Sodium Heat Pipes Using High-Resolution X-Ray Radiography and Application to Microreactors.
Separate and Integral Effect Experiments of Sodium Heat Pipes Using High-Resolution X-Ray Radiography and Application to Microreactors.

상세정보

자료유형  
 학위논문
Control Number  
0017164558
International Standard Book Number  
9798384045816
Dewey Decimal Classification Number  
620
Main Entry-Personal Name  
Huang, Pei-Hsun.
Publication, Distribution, etc. (Imprint  
[S.l.] : University of Michigan., 2024
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2024
Physical Description  
194 p.
General Note  
Source: Dissertations Abstracts International, Volume: 86-04, Section: B.
General Note  
Advisor: Manera, Annalisa;Petrov, Victor.
Dissertation Note  
Thesis (Ph.D.)--University of Michigan, 2024.
Summary, Etc.  
요약In very recent years, several research efforts have been dedicated to so-called microreactors. Several designs are being pursued by various companies such as Westinghouse, OKLO, X-energy, HolosGen, USNC, to name a few, with financial support from private industries, the US Department of Energy (DOE) and the US Department of Defense (DOD). With power production up to 20 MWe, these reactors are designed to be easily transported within ISO containers and either provide heat for industrial processes or produce electricity in remote locations, which often rely on Diesel generators (e.g. mining operations). Several of these microreactor concepts use sodium heat pipes for passive heat removal, which means no external electricity is needed. The use of alkali metal heat pipes enables the system to operate fully passively with high mobility. To optimize the design of heat pipe microreactors and assess their behaviour under accident scenarios, the heat removal performance of sodium heat pipes and their behaviour in normal operation and postulated accident scenarios need to be thoroughly investigated so that reliable models can be developed to predict the behaviour of heat pipes under various operating conditions and safety analyses of heat pipe microreactor concepts can be carried out.Past studies on alkali metal heat pipes are scarce and have been limited to the system-level behaviour, without information on the flow phenomena of the working fluid inside the heat pipe. In addition, significant uncertainties exist on the heat transfer characteristics across the full range of flow regimes including dryout conditions. The visualization of the working fluid phases within the heat pipe is essential to gain insights into the particular flow regime developing under the different steady-state and transient operating conditions of the heat pipe. This is because the flow regime has a strong impact on the heat transfer and therefore heat removal performance of the heat pipe. This thesis aims to provide high-resolution experimental data for sodium heat pipes under various operating conditions, including startup, shutdown and abnormal conditions. Two experimental facilities were designed and built. The first experimental facility, the MIchigan single SOdium Heat pipe separate-effect (MISOH1) test facility, allows the investigation of the behaviour of a single sodium heat pipe under well-controlled heating powers and boundary conditions. The facility allows the investigation of the effect of various parameters such as evaporator heating rate, cooling conditions in the condenser region, heat pipe orientation, and the sodium filling ratio within the heat pipe itself. The Michigan High-Resolution Tomographic Imaging (CHROMA) system, which allows for high-speed, high-resolution x-ray radiography imaging, is employed at the MISOH1 facility to measure the time-dependent two-phase vapor-liquid sodium structures within the heat pipe under different operating regimes. The second facility, the MIchigan SOdium Heat pipe bundle (MISOH2) test facility, has been specifically designed to simulate the thermal-hydraulic behaviour of a sodium heat pipe microreactor during normal operation and postulated accidents. Special attention is focused on the potential occurrence of "cascade failure", which might be caused by the heat load redistribution on neighbouring heat pipes consequent to the failure of local heat pipes. For the separate effect of a single sodium heat pipe, the thesis provides the first-time experimental database concerning various effects of key parameters, synchronized with x-ray radiography measurement. Several boiling characteristics coupled with these parameters were identified. The work incorporated the first-time experiment on the integral effect of heat pipes bundle. The influence of local heat pipe boundary change or failure on the neighbouring heat pipes was learned. Both experimental databases can be used for the development and validation of heat pipe models.
Subject Added Entry-Topical Term  
Engineering.
Subject Added Entry-Topical Term  
Nuclear engineering.
Subject Added Entry-Topical Term  
Nuclear physics.
Subject Added Entry-Topical Term  
Energy.
Index Term-Uncontrolled  
Sodium heat pipe
Index Term-Uncontrolled  
Geyser boiling
Index Term-Uncontrolled  
Developed boiling
Index Term-Uncontrolled  
X-ray radiography
Index Term-Uncontrolled  
Heat pipes bundle
Index Term-Uncontrolled  
Special purpose reactor
Added Entry-Corporate Name  
University of Michigan Nuclear Engineering & Radiological Sciences
Host Item Entry  
Dissertations Abstracts International. 86-04B.
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:654936

MARC

 008250224s2024        us  ||||||||||||||c||eng  d
■001000017164558
■00520250211153016
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798384045816
■035    ▼a(MiAaPQ)AAI31631534
■035    ▼a(MiAaPQ)umichrackham005788
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a620
■1001  ▼aHuang,  Pei-Hsun.
■24510▼aSeparate  and  Integral  Effect  Experiments  of  Sodium  Heat  Pipes  Using  High-Resolution  X-Ray  Radiography  and  Application  to  Microreactors.
■260    ▼a[S.l.]▼bUniversity  of  Michigan.  ▼c2024
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2024
■300    ▼a194  p.
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  86-04,  Section:  B.
■500    ▼aAdvisor:  Manera,  Annalisa;Petrov,  Victor.
■5021  ▼aThesis  (Ph.D.)--University  of  Michigan,  2024.
■520    ▼aIn  very  recent  years,  several  research  efforts  have  been  dedicated  to  so-called  microreactors.  Several  designs  are  being  pursued  by  various  companies  such  as  Westinghouse,  OKLO,  X-energy,  HolosGen,  USNC,  to  name  a  few,  with  financial  support  from  private  industries,  the  US  Department  of  Energy  (DOE)  and  the  US  Department  of  Defense  (DOD).  With  power  production  up  to  20  MWe,  these  reactors  are  designed  to  be  easily  transported  within  ISO  containers  and  either  provide  heat  for  industrial  processes  or  produce  electricity  in  remote  locations,  which  often  rely  on  Diesel  generators  (e.g.  mining  operations).  Several  of  these  microreactor  concepts  use  sodium  heat  pipes  for  passive  heat  removal,  which  means  no  external  electricity  is  needed.  The  use  of  alkali  metal  heat  pipes  enables  the  system  to  operate  fully  passively  with  high  mobility.  To  optimize  the  design  of  heat  pipe  microreactors  and  assess  their  behaviour  under  accident  scenarios,  the  heat  removal  performance  of  sodium  heat  pipes  and  their  behaviour  in  normal  operation  and  postulated  accident  scenarios  need  to  be  thoroughly  investigated  so  that  reliable  models  can  be  developed  to  predict  the  behaviour  of  heat  pipes  under  various  operating  conditions  and  safety  analyses  of  heat  pipe  microreactor  concepts  can  be  carried  out.Past  studies  on  alkali  metal  heat  pipes  are  scarce  and  have  been  limited  to  the  system-level  behaviour,  without  information  on  the  flow  phenomena  of  the  working  fluid  inside  the  heat  pipe.  In  addition,  significant  uncertainties  exist  on  the  heat  transfer  characteristics  across  the  full  range  of  flow  regimes  including  dryout  conditions.  The  visualization  of  the  working  fluid  phases  within  the  heat  pipe  is  essential  to  gain  insights  into  the  particular  flow  regime  developing  under  the  different  steady-state  and  transient  operating  conditions  of  the  heat  pipe.  This  is  because  the  flow  regime  has  a  strong  impact  on  the  heat  transfer  and  therefore  heat  removal  performance  of  the  heat  pipe. This  thesis  aims  to  provide  high-resolution  experimental  data  for  sodium  heat  pipes  under  various  operating  conditions,  including  startup,  shutdown  and  abnormal  conditions.  Two  experimental  facilities  were  designed  and  built.  The  first  experimental  facility,  the  MIchigan  single  SOdium  Heat  pipe  separate-effect  (MISOH1)  test  facility,  allows  the  investigation  of  the  behaviour  of  a  single  sodium  heat  pipe  under  well-controlled  heating  powers  and  boundary  conditions.  The  facility  allows  the  investigation  of  the  effect  of  various  parameters  such  as  evaporator  heating  rate,  cooling  conditions  in  the  condenser  region,  heat  pipe  orientation,  and  the  sodium  filling  ratio  within  the  heat  pipe  itself.  The  Michigan  High-Resolution  Tomographic  Imaging  (CHROMA)  system,  which  allows  for  high-speed,  high-resolution  x-ray  radiography  imaging,  is  employed  at  the  MISOH1  facility  to  measure  the  time-dependent  two-phase  vapor-liquid  sodium  structures  within  the  heat  pipe  under  different  operating  regimes.  The  second  facility,  the  MIchigan  SOdium  Heat  pipe  bundle  (MISOH2)  test  facility,  has  been  specifically  designed  to  simulate  the  thermal-hydraulic  behaviour  of  a  sodium  heat  pipe  microreactor  during  normal  operation  and  postulated  accidents.  Special  attention  is  focused  on  the  potential  occurrence  of  "cascade  failure",  which  might  be  caused  by  the  heat  load  redistribution  on  neighbouring  heat  pipes  consequent  to  the  failure  of  local  heat  pipes.  For  the  separate  effect  of  a  single  sodium  heat  pipe,  the  thesis  provides  the  first-time  experimental  database  concerning  various  effects  of  key  parameters,  synchronized  with  x-ray  radiography  measurement.  Several  boiling  characteristics  coupled  with  these  parameters  were  identified.  The  work  incorporated  the  first-time  experiment  on  the  integral  effect  of  heat  pipes  bundle.  The  influence  of  local  heat  pipe  boundary  change  or  failure  on  the  neighbouring  heat  pipes  was  learned.  Both  experimental  databases  can  be  used  for  the  development  and  validation  of  heat  pipe  models.
■590    ▼aSchool  code:  0127.
■650  4▼aEngineering.
■650  4▼aNuclear  engineering.
■650  4▼aNuclear  physics.
■650  4▼aEnergy.
■653    ▼aSodium  heat  pipe
■653    ▼aGeyser  boiling
■653    ▼aDeveloped  boiling
■653    ▼aX-ray  radiography
■653    ▼aHeat  pipes  bundle
■653    ▼aSpecial  purpose  reactor
■690    ▼a0537
■690    ▼a0552
■690    ▼a0756
■690    ▼a0791
■71020▼aUniversity  of  Michigan▼bNuclear  Engineering  &  Radiological  Sciences.
■7730  ▼tDissertations  Abstracts  International▼g86-04B.
■790    ▼a0127
■791    ▼aPh.D.
■792    ▼a2024
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T17164558▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    Info Détail de la recherche.

    • Réservation
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • My Folder
    Matériel
    Reg No. Call No. emplacement Status Lend Info
    TQ0030858 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * Les réservations sont disponibles dans le livre d'emprunt. Pour faire des réservations, S'il vous plaît cliquer sur le bouton de réservation

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치