본문

서브메뉴

Computational Methods in Functional Prioritization of Polygenic Risk Score Models.
Computational Methods in Functional Prioritization of Polygenic Risk Score Models.

상세정보

자료유형  
 학위논문
Control Number  
0017164576
International Standard Book Number  
9798384046172
Dewey Decimal Classification Number  
574
Main Entry-Personal Name  
Crone, Bradley.
Publication, Distribution, etc. (Imprint  
[S.l.] : University of Michigan., 2024
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2024
Physical Description  
122 p.
General Note  
Source: Dissertations Abstracts International, Volume: 86-04, Section: B.
General Note  
Advisor: Boyle, Alan.
Dissertation Note  
Thesis (Ph.D.)--University of Michigan, 2024.
Summary, Etc.  
요약Polygenic risk scores (PRS) have emerged as a powerful tool in genetic research, providing a means to quantify an individual's genetic predisposition to complex traits and diseases. Accurate prediction models are reliant on large ancestry-specific genome-wide association study (GWAS) summary statistics, which are lacking for non-European ancestry populations. Transferability of European-derived PRS across ancestries are confounded by differences in linkage disequilibrium and genetic architectures, limiting the predictive power of risk models in non-European ancestries.To address this challenge, my dissertation focuses on leveraging functional genomic information to prioritize European GWAS single nucleotide polymorphisms (SNPs) with potential regulatory effects in calculating PRS for non-European target samples. Functional regulatory mutations are likely shared between ancestries, and selecting GWAS SNPs with strong functional evidence over association signals can improve portability of scoring models. In Chapter 2, I introduce tissue-specific functional prioritization of European GWAS SNPs in trans-ancestral PRS models by leveraging RegulomeDB-derived regulatory annotation models. I show that selecting SNPs prioritized by tissue-specific functional probabilities confers greater accuracy in cross-population predictions than selection of GWAS SNPs by association signal alone. The study introduces a method to isolate and identify common functional regulatory mutations across different ancestral backgrounds, aiding in the refinement of disease risk models targeting under-represented populations.In Chapter 3, I expand on the single tissue prioritization model to encompass functional regulatory mutations from all tissue types significantly enriched for trait heritability. I introduce an algorithm that iteratively constructs and optimizes European-derived functionally-informed PRS models. Cross-population validation in African target samples shows enhanced predictive accuracy and transferability of multi-tissue PRS models compared to single-tissue functional prioritization. The results highlight the importance of incorporating functional influences of all implicated tissues to improve the generalizability of complex trait PRS models across diverse ancestries.In Chapter 4, I provide detailed descriptions of the computational pipelines I developed for the single tissue prioritization approach and the multiple tissue optimization algorithm for trans-ancestral functional PRS modeling. I implemented both established and custom software to construct PRS targeting functionally-prioritized GWAS SNPs in my investigations. These tools were developed with the goal of scientific reproducibility and accessibility, and have been made publicly available to enable future researchers in conducting additional studies on the regulatory impacts of polygenic disease risk.Overall, the methods and models presented in my dissertation have the potential to advance trans-ancestral PRS modeling and enhance the precision of disease risk predictions for underrepresented ancestries. 
Subject Added Entry-Topical Term  
Bioinformatics.
Subject Added Entry-Topical Term  
Genetics.
Subject Added Entry-Topical Term  
Biochemistry.
Subject Added Entry-Topical Term  
Bioengineering.
Index Term-Uncontrolled  
Functional prioritization
Index Term-Uncontrolled  
Polygenic risk scores
Index Term-Uncontrolled  
Single nucleotide polymorphisms
Index Term-Uncontrolled  
Computational pipelines
Index Term-Uncontrolled  
Genome-wide association study
Added Entry-Corporate Name  
University of Michigan Bioinformatics
Host Item Entry  
Dissertations Abstracts International. 86-04B.
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:654930

MARC

 008250224s2024        us  ||||||||||||||c||eng  d
■001000017164576
■00520250211153018
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798384046172
■035    ▼a(MiAaPQ)AAI31631562
■035    ▼a(MiAaPQ)umichrackham005624
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a574
■1001  ▼aCrone,  Bradley.
■24510▼aComputational  Methods  in  Functional  Prioritization  of  Polygenic  Risk  Score  Models.
■260    ▼a[S.l.]▼bUniversity  of  Michigan.  ▼c2024
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2024
■300    ▼a122  p.
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  86-04,  Section:  B.
■500    ▼aAdvisor:  Boyle,  Alan.
■5021  ▼aThesis  (Ph.D.)--University  of  Michigan,  2024.
■520    ▼aPolygenic  risk  scores  (PRS)  have  emerged  as  a  powerful  tool  in  genetic  research,  providing  a  means  to  quantify  an  individual's  genetic  predisposition  to  complex  traits  and  diseases.  Accurate  prediction  models  are  reliant  on  large  ancestry-specific  genome-wide  association  study  (GWAS)  summary  statistics,  which  are  lacking  for  non-European  ancestry  populations.  Transferability  of  European-derived  PRS  across  ancestries  are  confounded  by  differences  in  linkage  disequilibrium  and  genetic  architectures,  limiting  the  predictive  power  of  risk  models  in  non-European  ancestries.To  address  this  challenge,  my  dissertation  focuses  on  leveraging  functional  genomic  information  to  prioritize  European  GWAS  single  nucleotide  polymorphisms  (SNPs)  with  potential  regulatory  effects  in  calculating  PRS  for  non-European  target  samples.  Functional  regulatory  mutations  are  likely  shared  between  ancestries,  and  selecting  GWAS  SNPs  with  strong  functional  evidence  over  association  signals  can  improve  portability  of  scoring  models. In  Chapter  2,  I  introduce  tissue-specific  functional  prioritization  of  European  GWAS  SNPs  in  trans-ancestral  PRS  models  by  leveraging  RegulomeDB-derived  regulatory  annotation  models.  I  show  that  selecting  SNPs  prioritized  by  tissue-specific  functional  probabilities  confers  greater  accuracy  in  cross-population  predictions  than  selection  of  GWAS  SNPs  by  association  signal  alone.  The  study  introduces  a  method  to  isolate  and  identify  common  functional  regulatory  mutations  across  different  ancestral  backgrounds,  aiding  in  the  refinement  of  disease  risk  models  targeting  under-represented  populations.In  Chapter  3,  I  expand  on  the  single  tissue  prioritization  model  to  encompass  functional  regulatory  mutations  from  all  tissue  types  significantly  enriched  for  trait  heritability.  I  introduce  an  algorithm  that  iteratively  constructs  and  optimizes  European-derived  functionally-informed  PRS  models.  Cross-population  validation  in  African  target  samples  shows  enhanced  predictive  accuracy  and  transferability  of  multi-tissue  PRS  models  compared  to  single-tissue  functional  prioritization.  The  results  highlight  the  importance  of  incorporating  functional  influences  of  all  implicated  tissues  to  improve  the  generalizability  of  complex  trait  PRS  models  across  diverse  ancestries.In  Chapter  4,  I  provide  detailed  descriptions  of  the  computational  pipelines  I  developed  for  the  single  tissue  prioritization  approach  and  the  multiple  tissue  optimization  algorithm  for  trans-ancestral  functional  PRS  modeling.  I  implemented  both  established  and  custom  software  to  construct  PRS  targeting  functionally-prioritized  GWAS  SNPs  in  my  investigations.  These  tools  were  developed  with  the  goal  of  scientific  reproducibility  and  accessibility,  and  have  been  made  publicly  available  to  enable  future  researchers  in  conducting  additional  studies  on  the  regulatory  impacts  of  polygenic  disease  risk.Overall,  the  methods  and  models  presented  in  my  dissertation  have  the  potential  to  advance  trans-ancestral  PRS  modeling  and  enhance  the  precision  of  disease  risk  predictions  for  underrepresented  ancestries. 
■590    ▼aSchool  code:  0127.
■650  4▼aBioinformatics.
■650  4▼aGenetics.
■650  4▼aBiochemistry.
■650  4▼aBioengineering.
■653    ▼aFunctional  prioritization
■653    ▼aPolygenic  risk  scores
■653    ▼aSingle  nucleotide  polymorphisms
■653    ▼aComputational  pipelines  
■653    ▼aGenome-wide  association  study
■690    ▼a0715
■690    ▼a0369
■690    ▼a0202
■690    ▼a0487
■71020▼aUniversity  of  Michigan▼bBioinformatics.
■7730  ▼tDissertations  Abstracts  International▼g86-04B.
■790    ▼a0127
■791    ▼aPh.D.
■792    ▼a2024
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T17164576▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    詳細情報

    • 予約
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • 私のフォルダ
    資料
    登録番号 請求記号 場所 ステータス 情報を貸す
    TQ0030852 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    *ご予約は、借入帳でご利用いただけます。予約をするには、予約ボタンをクリックしてください

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치