본문

서브메뉴

Optimizing Healthcare Decision-Making: Markov Decision Processes for Liver Transplants, Frequent Interventions, and Infectious Disease Control.
Optimizing Healthcare Decision-Making: Markov Decision Processes for Liver Transplants, Frequent Interventions, and Infectious Disease Control.

상세정보

자료유형  
 학위논문
Control Number  
0017162304
International Standard Book Number  
9798382833071
Dewey Decimal Classification Number  
658
Main Entry-Personal Name  
Zhang, Suyanpeng.
Publication, Distribution, etc. (Imprint  
[S.l.] : University of Southern California., 2024
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2024
Physical Description  
170 p.
General Note  
Source: Dissertations Abstracts International, Volume: 85-12, Section: B.
General Note  
Advisor: Suen, Sze-Chuan.
Dissertation Note  
Thesis (Ph.D.)--University of Southern California, 2024.
Summary, Etc.  
요약Repeated decision-making problems in the context of uncertainty naturally arise in healthcare settings. Markov decision processes (MDPs) have proven useful in many healthcare contexts, integrating disease progression, decision-making, costs, and benefits into an optimization framework. However, implementing MDPs in healthcare settings is nontrivial due to challenges including incorporating unique characteristics of certain diseases, determining the optimal frequency of decision-making, and dealing with the infinite number of possible states.In this dissertation, we focus on specific healthcare problems and identify key structural properties to address healthcare questions. We present a finite horizon MDP framework for patients with acute liver failure in need of a transplant, determining the optimal timing for accepting a suboptimal organ to maximize one-year survival probability. Additionally, we study the value provided by having additional decision-making opportunities in each epoch. We provide structural properties of the optimal policies and quantify the difference in optimal values between MDP problems of different decision-making frequencies. We analyze a numerical example using liver transplantation in high-risk patients and treatment initiation for chronic kidney disease patients to illustrate our findings. Finally, in the fourth chapter, to address the curse of dimensionality, we propose a novel greedy algorithm for non-uniform discretization in a population-level MDP for infectious disease control.The dissertation contributes to the field of healthcare applications by providing practical MDP frame-works and efficient algorithms to tackle complex decision-making problems. The theoretical results and empirical analyses offer valuable guidance for healthcare decision-makers in diverse scenarios.
Subject Added Entry-Topical Term  
Industrial engineering.
Subject Added Entry-Topical Term  
Medicine.
Index Term-Uncontrolled  
Dynamic programming
Index Term-Uncontrolled  
Infectious disease control
Index Term-Uncontrolled  
Liver transplant
Index Term-Uncontrolled  
Healthcare settings
Index Term-Uncontrolled  
Decision-making
Added Entry-Corporate Name  
University of Southern California Industrial and Systems Engineering
Host Item Entry  
Dissertations Abstracts International. 85-12B.
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:654866

MARC

 008250224s2024        us  ||||||||||||||c||eng  d
■001000017162304
■00520250211151957
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798382833071
■035    ▼a(MiAaPQ)AAI31329250
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a658
■1001  ▼aZhang,  Suyanpeng.
■24510▼aOptimizing  Healthcare  Decision-Making:  Markov  Decision  Processes  for  Liver  Transplants,  Frequent  Interventions,  and  Infectious  Disease  Control.
■260    ▼a[S.l.]▼bUniversity  of  Southern  California.  ▼c2024
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2024
■300    ▼a170  p.
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  85-12,  Section:  B.
■500    ▼aAdvisor:  Suen,  Sze-Chuan.
■5021  ▼aThesis  (Ph.D.)--University  of  Southern  California,  2024.
■520    ▼aRepeated  decision-making  problems  in  the  context  of  uncertainty  naturally  arise  in  healthcare  settings.  Markov  decision  processes  (MDPs)  have  proven  useful  in  many  healthcare  contexts,  integrating  disease  progression,  decision-making,  costs,  and  benefits  into  an  optimization  framework.  However,  implementing  MDPs  in  healthcare  settings  is  nontrivial  due  to  challenges  including  incorporating  unique  characteristics  of  certain  diseases,  determining  the  optimal  frequency  of  decision-making,  and  dealing  with  the  infinite  number  of  possible  states.In  this  dissertation,  we  focus  on  specific  healthcare  problems  and  identify  key  structural  properties  to  address  healthcare  questions.  We  present  a  finite  horizon  MDP  framework  for  patients  with  acute  liver  failure  in  need  of  a  transplant,  determining  the  optimal  timing  for  accepting  a  suboptimal  organ  to  maximize  one-year  survival  probability.  Additionally,  we  study  the  value  provided  by  having  additional  decision-making  opportunities  in  each  epoch.  We  provide  structural  properties  of  the  optimal  policies  and  quantify  the  difference  in  optimal  values  between  MDP  problems  of  different  decision-making  frequencies.  We  analyze  a  numerical  example  using  liver  transplantation  in  high-risk  patients  and  treatment  initiation  for  chronic  kidney  disease  patients  to  illustrate  our  findings.  Finally,  in  the  fourth  chapter,  to  address  the  curse  of  dimensionality,  we  propose  a  novel  greedy  algorithm  for  non-uniform  discretization  in  a  population-level  MDP  for  infectious  disease  control.The  dissertation  contributes  to  the  field  of  healthcare  applications  by  providing  practical  MDP  frame-works  and  efficient  algorithms  to  tackle  complex  decision-making  problems.  The  theoretical  results  and  empirical  analyses  offer  valuable  guidance  for  healthcare  decision-makers  in  diverse  scenarios.
■590    ▼aSchool  code:  0208.
■650  4▼aIndustrial  engineering.
■650  4▼aMedicine.
■653    ▼aDynamic  programming
■653    ▼aInfectious  disease  control
■653    ▼aLiver  transplant
■653    ▼aHealthcare  settings
■653    ▼aDecision-making
■690    ▼a0546
■690    ▼a0796
■690    ▼a0564
■690    ▼a0769
■71020▼aUniversity  of  Southern  California▼bIndustrial  and  Systems  Engineering.
■7730  ▼tDissertations  Abstracts  International▼g85-12B.
■790    ▼a0208
■791    ▼aPh.D.
■792    ▼a2024
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T17162304▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    신착도서 더보기
    최근 3년간 통계입니다.

    소장정보

    • 예약
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • 나의폴더
    소장자료
    등록번호 청구기호 소장처 대출가능여부 대출정보
    TQ0030788 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * 대출중인 자료에 한하여 예약이 가능합니다. 예약을 원하시면 예약버튼을 클릭하십시오.

    해당 도서를 다른 이용자가 함께 대출한 도서

    관련도서

    관련 인기도서

    도서위치