본문

서브메뉴

The Extremal Collapse Threshold and the Third Law of Black Hole Thermodynamics.
The Extremal Collapse Threshold and the Third Law of Black Hole Thermodynamics.

상세정보

자료유형  
 학위논문
Control Number  
0017161785
International Standard Book Number  
9798382807065
Dewey Decimal Classification Number  
510
Main Entry-Personal Name  
Unger, Ryan.
Publication, Distribution, etc. (Imprint  
[S.l.] : Princeton University., 2024
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2024
Physical Description  
373 p.
General Note  
Source: Dissertations Abstracts International, Volume: 85-12, Section: B.
General Note  
Advisor: Dafermos, Mihalis.
Dissertation Note  
Thesis (Ph.D.)--Princeton University, 2024.
Summary, Etc.  
요약In this dissertation, we investigate extremal black holes in general relativity. Extremal black holes are exceptional solutions of Einstein's equations which have absolute zero temperature in the celebrated thermodynamic analogy of black hole mechanics.Our first main result is a definitive disproof of the "third law of black hole thermodynamics." We construct examples of black hole formation from regular, one-ended asymptotically flat Cauchy data for the Einstein-Maxwell-charged scalar field system which are exactly isometric to extremal Reissner-Nordstrom after a finite advanced time along the event horizon. Moreover, in each of these examples the apparent horizon of the black hole coincides with that of a Schwarzschild solution at earlier advanced times. We also prove similar black hole formation results for very slowly rotating Kerr black holes in vacuum.Our second main result is a proof that extremal black holes arise on the threshold of gravitational collapse. More precisely, we construct smooth one-parameter families of smooth, spherically symmetric solutions to the Einstein-Maxwell-Vlasov system which interpolate between dispersion and collapse and for which the critical solution is an extremal Reissner-Nordstrom black hole. We call this critical phenomenon extremal critical collapse and the present work constitutes the first rigorous result on the black hole formation threshold in general relativity.The above mentioned results constitute Part I of this dissertation and were all obtained in joint work with Christoph Kehle.In Part II of this dissertation, we study extensions of the celebrated positive mass theorem to a very general class of initial data, including extremal black holes. These results were obtained in collaboration with Dan A. Lee, Martin Lesourd, and Shing-Tung Yau. We provide a resolution of the spacetime positive mass theorem on manifolds with boundary, a resolution of the remaining cases of Schoen and Yau's Liouville conjecture for locally conformally flat manifolds, and demonstrate a novel scalar curvature shielding phenomenon for the ADM mass.
Subject Added Entry-Topical Term  
Mathematics.
Subject Added Entry-Topical Term  
Theoretical physics.
Subject Added Entry-Topical Term  
Astrophysics.
Subject Added Entry-Topical Term  
Thermodynamics.
Index Term-Uncontrolled  
Black holes
Index Term-Uncontrolled  
Critical collapse
Index Term-Uncontrolled  
Black hole thermodynamics
Index Term-Uncontrolled  
Positive mass theorem
Index Term-Uncontrolled  
Scalar curvature
Index Term-Uncontrolled  
Third law
Added Entry-Corporate Name  
Princeton University Mathematics
Host Item Entry  
Dissertations Abstracts International. 85-12B.
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:654768

MARC

 008250224s2024        us  ||||||||||||||c||eng  d
■001000017161785
■00520250211151445
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798382807065
■035    ▼a(MiAaPQ)AAI31296386
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a510
■1001  ▼aUnger,  Ryan.▼0(orcid)0000-0002-9226-303X
■24510▼aThe  Extremal  Collapse  Threshold  and  the  Third  Law  of  Black  Hole  Thermodynamics.
■260    ▼a[S.l.]▼bPrinceton  University.  ▼c2024
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2024
■300    ▼a373  p.
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  85-12,  Section:  B.
■500    ▼aAdvisor:  Dafermos,  Mihalis.
■5021  ▼aThesis  (Ph.D.)--Princeton  University,  2024.
■520    ▼aIn  this  dissertation,  we  investigate  extremal  black  holes  in  general  relativity.  Extremal  black  holes  are  exceptional  solutions  of  Einstein's  equations  which  have  absolute  zero  temperature  in  the  celebrated  thermodynamic  analogy  of  black  hole  mechanics.Our  first  main  result  is  a  definitive  disproof  of  the  "third  law  of  black  hole  thermodynamics."  We  construct  examples  of  black  hole  formation  from  regular,  one-ended  asymptotically  flat  Cauchy  data  for  the  Einstein-Maxwell-charged  scalar  field  system  which  are  exactly  isometric  to  extremal  Reissner-Nordstrom  after  a  finite  advanced  time  along  the  event  horizon.  Moreover,  in  each  of  these  examples  the  apparent  horizon  of  the  black  hole  coincides  with  that  of  a  Schwarzschild  solution  at  earlier  advanced  times.  We  also  prove  similar  black  hole  formation  results  for  very  slowly  rotating  Kerr  black  holes  in  vacuum.Our  second  main  result  is  a  proof  that  extremal  black  holes  arise  on  the  threshold  of  gravitational  collapse.  More  precisely,  we  construct  smooth  one-parameter  families  of  smooth,  spherically  symmetric  solutions  to  the  Einstein-Maxwell-Vlasov  system  which  interpolate  between  dispersion  and  collapse  and  for  which  the  critical  solution  is  an  extremal  Reissner-Nordstrom  black  hole.  We  call  this  critical  phenomenon  extremal  critical  collapse  and  the  present  work  constitutes  the  first  rigorous  result  on  the  black  hole  formation  threshold  in  general  relativity.The  above  mentioned  results  constitute  Part  I  of  this  dissertation  and  were  all  obtained  in  joint  work  with  Christoph  Kehle.In  Part  II  of  this  dissertation,  we  study  extensions  of  the  celebrated  positive  mass  theorem  to  a  very  general  class  of  initial  data,  including  extremal  black  holes.  These  results  were  obtained  in  collaboration  with  Dan  A.  Lee,  Martin  Lesourd,  and  Shing-Tung  Yau.  We  provide  a  resolution  of  the  spacetime  positive  mass  theorem  on  manifolds  with  boundary,  a  resolution  of  the  remaining  cases  of  Schoen  and  Yau's  Liouville  conjecture  for  locally  conformally  flat  manifolds,  and  demonstrate  a  novel  scalar  curvature  shielding  phenomenon  for  the  ADM  mass.
■590    ▼aSchool  code:  0181.
■650  4▼aMathematics.
■650  4▼aTheoretical  physics.
■650  4▼aAstrophysics.
■650  4▼aThermodynamics.
■653    ▼aBlack  holes
■653    ▼aCritical  collapse
■653    ▼aBlack  hole  thermodynamics
■653    ▼aPositive  mass  theorem
■653    ▼aScalar  curvature
■653    ▼aThird  law
■690    ▼a0405
■690    ▼a0753
■690    ▼a0596
■690    ▼a0348
■71020▼aPrinceton  University▼bMathematics.
■7730  ▼tDissertations  Abstracts  International▼g85-12B.
■790    ▼a0181
■791    ▼aPh.D.
■792    ▼a2024
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T17161785▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    高级搜索信息

    • 预订
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • 我的文件夹
    材料
    注册编号 呼叫号码. 收藏 状态 借信息.
    TQ0030690 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    *保留在借用的书可用。预订,请点击预订按钮

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치