본문

서브메뉴

Computational Approaches to Understand Mechanisms of Human Genetic Disorders.
Computational Approaches to Understand Mechanisms of Human Genetic Disorders.

상세정보

자료유형  
 학위논문
Control Number  
0017164663
International Standard Book Number  
9798342761796
Dewey Decimal Classification Number  
590
Main Entry-Personal Name  
Zhong, Guojie.
Publication, Distribution, etc. (Imprint  
[S.l.] : Columbia University., 2024
Publication, Distribution, etc. (Imprint  
Ann Arbor : ProQuest Dissertations & Theses, 2024
Physical Description  
151 p.
General Note  
Source: Dissertations Abstracts International, Volume: 86-05, Section: B.
General Note  
Advisor: Shen, Yufeng.
Dissertation Note  
Thesis (Ph.D.)--Columbia University, 2024.
Summary, Etc.  
요약Human genetics is one of the strongest risk factors for complex diseases. Understanding the effects of genetic variations not only serves as a fundamental approach to studying disease mechanisms but also offers unprecedented opportunities for improved clinical screening, disease diagnosis and therapeutic discoveries. Despite decades of extensive DNA sequencing and genetic research involving large cohorts, two major challenges remain. First, the majority of disease risk genes remain unidentified due to limited statistical power. Second, the functional effects of rare variants, especially missense variants, in disease risk genes are understudied. In this thesis, I describe new computational approaches to address those challenges using statistical genetics and machine learning methods implementing intuition of biological mechanisms.First, I worked on a statistical framework that can identify disease related pathways from de novo coding variants data. I applied this framework to study the genetics of esophageal atresia / tracheoesophageal fistula (EA/TEF) and identified several potential disease causal pathways that involved in endosome trafficking. Next, I developed a new method to identifying disease risk genes by integrating genetic (rare de novo variants) and functional genomics data. Identifying risk genes using rare variants typically has low statistical power due to the rarity of genotype data. Using functional genomics data has the potential to address this challenge as it serves as informative priors of disease risk. Therefore, I developed a statistical method called VBASS. VBASS is a semi-supervised algorithm that uses a neural network to encode biological priors, such as cell type-specific expression values, into a rigorous Bayesian statistical model to increase statistical power. On simulated data, VBASS demonstrated proper error rate control and better power than current state-of-the-art methods. We applied VBASS to congenital heart disease (CHD) and autism spectrum disorder (ASD), identifying several novel disease risk genes along with their associated cell types.Finally, I focused on predicting the functional mechanisms of missense variants that cause diseases. Pathogenic missense variants may act through different modes of action (e.g., gain-of-function or loss-of-function) by affecting various aspects of protein function. These variants may result in distinct clinical conditions requiring different treatments, yet current computational tools cannot distinguish between them because their predictions heavily relied on evolutional conservation data. The recent breakthrough of AI-powered protein structure prediction tools provides an opportunity to address this challenge because the functional mechanisms of variants is intrinsically embedded in its structural properties. Therefore, I developed a deep learning method called PreMode. PreMode is a pretrained SE(3)-equivariant graph neural network model designed to capture the effects of missense variants from their structural contexts and evolutionary information. I pretrained PreMode using labeled pathogenicity data to enable the model to learn a general representation of variant effects, followed by protein-specific transfer learning to predict mode-of-action effects. I applied PreMode to the mode-of-action predictions of 17 genes and demonstrated that PreMode achieved state-of-the-art performance compared to existing models. PreMode has various applications, including identifying novel gain/loss-of-function variants, improving the study design of deep mutational scans and optimization in protein engineering.
Subject Added Entry-Topical Term  
Systematic biology.
Subject Added Entry-Topical Term  
Genetics.
Subject Added Entry-Topical Term  
Biostatistics.
Subject Added Entry-Topical Term  
Bioinformatics.
Index Term-Uncontrolled  
Birth defects
Index Term-Uncontrolled  
Computational biology
Index Term-Uncontrolled  
Developmental disorders
Index Term-Uncontrolled  
Human genetics
Index Term-Uncontrolled  
Machine learning
Added Entry-Corporate Name  
Columbia University Cellular Molecular and Biomedical Studies
Host Item Entry  
Dissertations Abstracts International. 86-05B.
Electronic Location and Access  
로그인을 한후 보실 수 있는 자료입니다.
Control Number  
joongbu:654746

MARC

 008250224s2024        us  ||||||||||||||c||eng  d
■001000017164663
■00520250211153029
■006m          o    d                
■007cr#unu||||||||
■020    ▼a9798342761796
■035    ▼a(MiAaPQ)AAI31634638
■040    ▼aMiAaPQ▼cMiAaPQ
■0820  ▼a590
■1001  ▼aZhong,  Guojie.
■24510▼aComputational  Approaches  to  Understand  Mechanisms  of  Human  Genetic  Disorders.
■260    ▼a[S.l.]▼bColumbia  University.  ▼c2024
■260  1▼aAnn  Arbor▼bProQuest  Dissertations  &  Theses▼c2024
■300    ▼a151  p.
■500    ▼aSource:  Dissertations  Abstracts  International,  Volume:  86-05,  Section:  B.
■500    ▼aAdvisor:  Shen,  Yufeng.
■5021  ▼aThesis  (Ph.D.)--Columbia  University,  2024.
■520    ▼aHuman  genetics  is  one  of  the  strongest  risk  factors  for  complex  diseases.  Understanding  the  effects  of  genetic  variations  not  only  serves  as  a  fundamental  approach  to  studying  disease  mechanisms  but  also  offers  unprecedented  opportunities  for  improved  clinical  screening,  disease  diagnosis  and  therapeutic  discoveries.  Despite  decades  of  extensive  DNA  sequencing  and  genetic  research  involving  large  cohorts,  two  major  challenges  remain.  First,  the  majority  of  disease  risk  genes  remain  unidentified  due  to  limited  statistical  power.  Second,  the  functional  effects  of  rare  variants,  especially  missense  variants,  in  disease  risk  genes  are  understudied.  In  this  thesis,  I  describe  new  computational  approaches  to  address  those  challenges  using  statistical  genetics  and  machine  learning  methods  implementing  intuition  of  biological  mechanisms.First,  I  worked  on  a  statistical  framework  that  can  identify  disease  related  pathways  from  de  novo  coding  variants  data.  I  applied  this  framework  to  study  the  genetics  of  esophageal  atresia  /  tracheoesophageal  fistula  (EA/TEF)  and  identified  several  potential  disease  causal  pathways  that  involved  in  endosome  trafficking. Next,  I  developed  a  new  method  to  identifying  disease  risk  genes  by  integrating  genetic  (rare  de  novo  variants)  and  functional  genomics  data.  Identifying  risk  genes  using  rare  variants typically  has  low  statistical  power  due  to  the  rarity  of  genotype  data.  Using  functional  genomics  data  has  the  potential  to  address  this  challenge  as  it  serves  as  informative  priors  of  disease  risk.  Therefore,  I  developed  a  statistical  method  called  VBASS.  VBASS  is  a  semi-supervised  algorithm  that  uses  a  neural  network  to  encode  biological  priors,  such  as  cell  type-specific  expression  values,  into  a  rigorous  Bayesian  statistical  model  to  increase  statistical  power.  On  simulated  data,  VBASS  demonstrated  proper  error  rate  control  and  better  power  than  current  state-of-the-art  methods.  We  applied  VBASS  to  congenital  heart  disease  (CHD)  and  autism  spectrum  disorder  (ASD),  identifying  several  novel  disease  risk  genes  along  with  their  associated  cell  types.Finally,  I  focused  on  predicting  the  functional  mechanisms  of  missense  variants  that  cause  diseases.  Pathogenic  missense  variants  may  act  through  different  modes  of  action  (e.g.,  gain-of-function  or  loss-of-function)  by  affecting  various  aspects  of  protein  function.  These  variants  may  result  in  distinct  clinical  conditions  requiring  different  treatments,  yet  current  computational  tools  cannot  distinguish  between  them  because  their  predictions  heavily  relied  on  evolutional  conservation  data.  The  recent  breakthrough  of  AI-powered  protein  structure  prediction  tools  provides  an  opportunity  to  address  this  challenge  because  the  functional  mechanisms  of  variants  is  intrinsically  embedded  in  its  structural  properties.  Therefore,  I  developed  a  deep  learning  method  called  PreMode.  PreMode  is  a  pretrained  SE(3)-equivariant  graph  neural  network  model  designed  to  capture  the  effects  of  missense  variants  from  their  structural  contexts  and  evolutionary  information.  I  pretrained  PreMode  using  labeled  pathogenicity  data  to  enable  the  model  to  learn  a  general  representation  of  variant  effects,  followed  by  protein-specific  transfer  learning  to  predict  mode-of-action  effects.  I  applied  PreMode  to  the  mode-of-action  predictions  of  17  genes  and  demonstrated  that  PreMode  achieved state-of-the-art  performance  compared  to  existing  models.  PreMode  has  various  applications,  including  identifying  novel  gain/loss-of-function  variants,  improving  the  study  design  of  deep  mutational  scans  and  optimization  in  protein  engineering.
■590    ▼aSchool  code:  0054.
■650  4▼aSystematic  biology.
■650  4▼aGenetics.
■650  4▼aBiostatistics.
■650  4▼aBioinformatics.
■653    ▼aBirth  defects
■653    ▼aComputational  biology
■653    ▼aDevelopmental  disorders
■653    ▼aHuman  genetics
■653    ▼aMachine  learning
■690    ▼a0423
■690    ▼a0369
■690    ▼a0715
■690    ▼a0308
■71020▼aColumbia  University▼bCellular,  Molecular  and  Biomedical  Studies.
■7730  ▼tDissertations  Abstracts  International▼g86-05B.
■790    ▼a0054
■791    ▼aPh.D.
■792    ▼a2024
■793    ▼aEnglish
■85640▼uhttp://www.riss.kr/pdu/ddodLink.do?id=T17164663▼nKERIS▼z이  자료의  원문은  한국교육학술정보원에서  제공합니다.

미리보기

내보내기

chatGPT토론

Ai 추천 관련 도서


    New Books MORE
    Related books MORE
    최근 3년간 통계입니다.

    Подробнее информация.

    • Бронирование
    • 캠퍼스간 도서대출
    • 서가에 없는 책 신고
    • моя папка
    материал
    Reg No. Количество платежных Местоположение статус Ленд информации
    TQ0030668 T   원문자료 열람가능/출력가능 열람가능/출력가능
    마이폴더 부재도서신고

    * Бронирование доступны в заимствований книги. Чтобы сделать предварительный заказ, пожалуйста, нажмите кнопку бронирование

    해당 도서를 다른 이용자가 함께 대출한 도서

    Related books

    Related Popular Books

    도서위치